Upload processing_spec_vision.py with huggingface_hub
Browse files- processing_spec_vision.py +367 -0
processing_spec_vision.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
Processor class for Spec-Vision.
|
18 |
+
"""
|
19 |
+
|
20 |
+
import re
|
21 |
+
from typing import List, Optional, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import torch
|
25 |
+
import torchvision
|
26 |
+
from PIL import Image
|
27 |
+
from transformers import AutoImageProcessor
|
28 |
+
from transformers.feature_extraction_utils import BatchFeature
|
29 |
+
from transformers.image_processing_utils import BaseImageProcessor
|
30 |
+
from transformers.image_transforms import convert_to_rgb
|
31 |
+
from transformers.image_utils import (OPENAI_CLIP_MEAN, OPENAI_CLIP_STD,
|
32 |
+
ImageInput, make_list_of_images,
|
33 |
+
valid_images)
|
34 |
+
from transformers.processing_utils import ProcessorMixin
|
35 |
+
from transformers.tokenization_utils_base import (PaddingStrategy, TextInput,
|
36 |
+
TruncationStrategy)
|
37 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
def padding_336(image):
|
42 |
+
"""Apply padding to make height a multiple of 336 while preserving aspect ratio."""
|
43 |
+
width, height = image.size
|
44 |
+
target_height = int(np.ceil(height / 336) * 336)
|
45 |
+
top_padding = int((target_height - height) / 2)
|
46 |
+
bottom_padding = target_height - height - top_padding
|
47 |
+
padded_image = torchvision.transforms.functional.pad(
|
48 |
+
image,
|
49 |
+
[0, top_padding, 0, bottom_padding],
|
50 |
+
fill=[255, 255, 255]
|
51 |
+
)
|
52 |
+
return padded_image
|
53 |
+
|
54 |
+
def calc_padded_size(width, height, padding_unit=336):
|
55 |
+
"""Calculate the padded dimensions for an image."""
|
56 |
+
target_height = int(np.ceil(height / padding_unit) * padding_unit)
|
57 |
+
padded_width = width
|
58 |
+
padded_height = target_height
|
59 |
+
return padded_width, padded_height
|
60 |
+
|
61 |
+
def hd_transform(img, hd_num=16):
|
62 |
+
"""Apply HD transformation with support for Spec-Vision's requirements."""
|
63 |
+
width, height = img.size
|
64 |
+
transposed = False
|
65 |
+
|
66 |
+
# Handle portrait images by transposing
|
67 |
+
if width < height:
|
68 |
+
img = img.transpose(Image.TRANSPOSE)
|
69 |
+
width, height = img.size
|
70 |
+
transposed = True
|
71 |
+
|
72 |
+
ratio = width / height
|
73 |
+
scale = 1
|
74 |
+
while scale * np.ceil(scale / ratio) <= hd_num:
|
75 |
+
scale += 1
|
76 |
+
scale -= 1
|
77 |
+
|
78 |
+
new_width = int(scale * 336)
|
79 |
+
new_height = int(new_width / ratio)
|
80 |
+
|
81 |
+
# Resize and pad
|
82 |
+
img = torchvision.transforms.functional.resize(img, [new_height, new_width])
|
83 |
+
img = padding_336(img)
|
84 |
+
|
85 |
+
# Restore original orientation if needed
|
86 |
+
if transposed:
|
87 |
+
img = img.transpose(Image.TRANSPOSE)
|
88 |
+
|
89 |
+
return img
|
90 |
+
|
91 |
+
def pad_to_max_crops(images, max_crops=5):
|
92 |
+
"""Pad batch of images to have consistent number of crops."""
|
93 |
+
B, _, H, W = images.shape
|
94 |
+
if B < max_crops:
|
95 |
+
padding = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
|
96 |
+
images = torch.cat([images, padding], dim=0)
|
97 |
+
return images
|
98 |
+
|
99 |
+
class SpecVisionImageProcessor(BaseImageProcessor):
|
100 |
+
"""
|
101 |
+
Image processor for Spec-Vision model.
|
102 |
+
|
103 |
+
This processor handles the preparation of images for the Spec-Vision model, including:
|
104 |
+
- HD transformation for high-resolution image processing
|
105 |
+
- Multi-crop processing with configurable number of crops
|
106 |
+
- Normalization and padding
|
107 |
+
"""
|
108 |
+
|
109 |
+
model_input_names = ["pixel_values"]
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
num_crops: int = 1,
|
114 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
115 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
116 |
+
do_convert_rgb: bool = True,
|
117 |
+
hd_transform_order: str = "sub_glb",
|
118 |
+
**kwargs,
|
119 |
+
) -> None:
|
120 |
+
super().__init__(**kwargs)
|
121 |
+
self.num_crops = num_crops
|
122 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
123 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
124 |
+
self.do_convert_rgb = do_convert_rgb
|
125 |
+
self.hd_transform_order = hd_transform_order
|
126 |
+
|
127 |
+
def calc_num_image_tokens(self, images: ImageInput) -> List[int]:
|
128 |
+
"""Calculate number of image tokens needed for each image."""
|
129 |
+
images = make_list_of_images(images)
|
130 |
+
if not valid_images(images):
|
131 |
+
raise ValueError("Invalid image type provided")
|
132 |
+
|
133 |
+
images = [image.convert('RGB') for image in images]
|
134 |
+
transformed_images = [hd_transform(im, hd_num=self.num_crops) for im in images]
|
135 |
+
shapes = [[im.size[1], im.size[0]] for im in transformed_images]
|
136 |
+
|
137 |
+
# Calculate tokens based on Spec-Vision's architecture
|
138 |
+
num_img_tokens = [
|
139 |
+
int((h//336 * w//336 + 1) * 144 + 1 + (h//336 + 1) * 12)
|
140 |
+
for h, w in shapes
|
141 |
+
]
|
142 |
+
return num_img_tokens
|
143 |
+
|
144 |
+
def preprocess(
|
145 |
+
self,
|
146 |
+
images: ImageInput,
|
147 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
148 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
149 |
+
do_convert_rgb: bool = None,
|
150 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
151 |
+
) -> BatchFeature:
|
152 |
+
"""
|
153 |
+
Preprocess images for the Spec-Vision model.
|
154 |
+
|
155 |
+
Handles HD transformation, normalization, and proper formatting of images
|
156 |
+
according to Spec-Vision's requirements.
|
157 |
+
"""
|
158 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
159 |
+
image_std = image_std if image_std is not None else self.image_std
|
160 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
161 |
+
|
162 |
+
# Validate and prepare images
|
163 |
+
images = make_list_of_images(images)
|
164 |
+
if not valid_images(images):
|
165 |
+
raise ValueError("Invalid image type provided")
|
166 |
+
|
167 |
+
if do_convert_rgb:
|
168 |
+
images = [convert_to_rgb(image) for image in images]
|
169 |
+
|
170 |
+
# Create image processor pipeline
|
171 |
+
img_processor = torchvision.transforms.Compose([
|
172 |
+
torchvision.transforms.ToTensor(),
|
173 |
+
torchvision.transforms.Normalize(image_mean, image_std)
|
174 |
+
])
|
175 |
+
|
176 |
+
# Process images according to Spec-Vision's HD transform requirements
|
177 |
+
images = [image.convert('RGB') for image in images]
|
178 |
+
transformed_images = [hd_transform(im, hd_num=self.num_crops) for im in images]
|
179 |
+
|
180 |
+
# Convert to tensors and normalize
|
181 |
+
hd_images = [img_processor(im) for im in transformed_images]
|
182 |
+
|
183 |
+
# Create global views
|
184 |
+
global_images = [
|
185 |
+
torch.nn.functional.interpolate(
|
186 |
+
im.unsqueeze(0).float(),
|
187 |
+
size=(336, 336),
|
188 |
+
mode='bicubic'
|
189 |
+
).to(im.dtype)
|
190 |
+
for im in hd_images
|
191 |
+
]
|
192 |
+
|
193 |
+
# Process shapes and calculate tokens
|
194 |
+
shapes = [[im.size(1), im.size(2)] for im in hd_images]
|
195 |
+
num_img_tokens = [
|
196 |
+
int(((h//336) * (w//336) + 1) * 144 + 1 + (h//336 + 1) * 12)
|
197 |
+
for h, w in shapes
|
198 |
+
]
|
199 |
+
|
200 |
+
# Reshape images according to Spec-Vision's requirements
|
201 |
+
hd_images_reshaped = [
|
202 |
+
im.reshape(1, 3, h//336, 336, w//336, 336)
|
203 |
+
.permute(0, 2, 4, 1, 3, 5)
|
204 |
+
.reshape(-1, 3, 336, 336)
|
205 |
+
.contiguous()
|
206 |
+
for im, (h, w) in zip(hd_images, shapes)
|
207 |
+
]
|
208 |
+
|
209 |
+
# Combine global and local views based on transform order
|
210 |
+
if self.hd_transform_order == "sub_glb":
|
211 |
+
processed_images = [
|
212 |
+
torch.cat([_im, _global_image], dim=0)
|
213 |
+
for _global_image, _im in zip(global_images, hd_images_reshaped)
|
214 |
+
]
|
215 |
+
else: # glb_sub
|
216 |
+
processed_images = [
|
217 |
+
torch.cat([_global_image, _im], dim=0)
|
218 |
+
for _global_image, _im in zip(global_images, hd_images_reshaped)
|
219 |
+
]
|
220 |
+
|
221 |
+
# Pad to consistent number of crops
|
222 |
+
image_batch = [
|
223 |
+
pad_to_max_crops(im, self.num_crops + 1)
|
224 |
+
for im in processed_images
|
225 |
+
]
|
226 |
+
image_batch = torch.stack(image_batch, dim=0)
|
227 |
+
|
228 |
+
return BatchFeature(
|
229 |
+
data={
|
230 |
+
"pixel_values": image_batch,
|
231 |
+
"image_sizes": shapes,
|
232 |
+
"num_img_tokens": num_img_tokens
|
233 |
+
},
|
234 |
+
tensor_type=return_tensors
|
235 |
+
)
|
236 |
+
|
237 |
+
class SpecVisionProcessor(ProcessorMixin):
|
238 |
+
"""
|
239 |
+
Combined processor for Spec-Vision model, handling both image and text inputs.
|
240 |
+
|
241 |
+
Combines SpecVisionImageProcessor for images and a tokenizer for text,
|
242 |
+
coordinating their interaction for multi-modal inputs.
|
243 |
+
"""
|
244 |
+
|
245 |
+
attributes = ["image_processor", "tokenizer"]
|
246 |
+
image_processor_class = "SpecVisionImageProcessor"
|
247 |
+
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
|
248 |
+
special_image_token = "<|image|>"
|
249 |
+
|
250 |
+
def __init__(self, image_processor, tokenizer):
|
251 |
+
self.image_processor = image_processor
|
252 |
+
self.tokenizer = tokenizer
|
253 |
+
self.num_img_tokens = image_processor.num_crops
|
254 |
+
self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)]
|
255 |
+
|
256 |
+
def __call__(
|
257 |
+
self,
|
258 |
+
text: Union[TextInput, List[TextInput]],
|
259 |
+
images: ImageInput = None,
|
260 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
261 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
262 |
+
max_length=None,
|
263 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
264 |
+
) -> BatchFeature:
|
265 |
+
"""Process both text and image inputs for the model."""
|
266 |
+
if images is not None:
|
267 |
+
image_features = self.image_processor(images, return_tensors=return_tensors)
|
268 |
+
else:
|
269 |
+
image_features = {}
|
270 |
+
|
271 |
+
# Process combined inputs
|
272 |
+
inputs = self._process_multimodal_inputs(
|
273 |
+
image_features,
|
274 |
+
text,
|
275 |
+
padding=padding,
|
276 |
+
truncation=truncation,
|
277 |
+
max_length=max_length,
|
278 |
+
return_tensors=return_tensors
|
279 |
+
)
|
280 |
+
|
281 |
+
return inputs
|
282 |
+
|
283 |
+
def _process_multimodal_inputs(self, images, texts, **kwargs):
|
284 |
+
"""Process and combine image and text inputs."""
|
285 |
+
if not images:
|
286 |
+
return BatchFeature(data=self.tokenizer(
|
287 |
+
texts,
|
288 |
+
return_tensors=kwargs.get('return_tensors'),
|
289 |
+
padding=kwargs.get('padding'),
|
290 |
+
truncation=kwargs.get('truncation'),
|
291 |
+
max_length=kwargs.get('max_length')
|
292 |
+
))
|
293 |
+
|
294 |
+
# Process text chunks and image tags
|
295 |
+
pattern = r"<\|image_\d+\|>"
|
296 |
+
text_chunks = [
|
297 |
+
self.tokenizer(chunk).input_ids
|
298 |
+
for chunk in re.split(pattern, texts)
|
299 |
+
]
|
300 |
+
|
301 |
+
# Handle image tokens
|
302 |
+
num_img_tokens = (
|
303 |
+
images['num_img_tokens']
|
304 |
+
if 'num_img_tokens' in images
|
305 |
+
else [self.num_img_tokens] * len(images['pixel_values'])
|
306 |
+
)
|
307 |
+
|
308 |
+
image_tags = re.findall(pattern, texts)
|
309 |
+
image_ids = [int(tag.split("|")[1].split("_")[-1]) for tag in image_tags]
|
310 |
+
|
311 |
+
# Validate image IDs
|
312 |
+
unique_ids = sorted(set(image_ids))
|
313 |
+
if unique_ids != list(range(1, len(unique_ids) + 1)):
|
314 |
+
raise ValueError(
|
315 |
+
f"Image IDs must be consecutive integers starting from 1, got {unique_ids}"
|
316 |
+
)
|
317 |
+
if len(unique_ids) != len(images['pixel_values']):
|
318 |
+
raise ValueError(
|
319 |
+
f"Number of image tags ({len(unique_ids)}) doesn't match "
|
320 |
+
f"number of images ({len(images['pixel_values'])})"
|
321 |
+
)
|
322 |
+
|
323 |
+
# Create padded image IDs
|
324 |
+
image_ids_padded = [
|
325 |
+
[-iid] * num_img_tokens[iid-1]
|
326 |
+
for iid in image_ids
|
327 |
+
]
|
328 |
+
|
329 |
+
# Combine text and image tokens
|
330 |
+
input_ids = []
|
331 |
+
for x in self._interleave_sequences(text_chunks, image_ids_padded):
|
332 |
+
input_ids.extend(x)
|
333 |
+
|
334 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
|
335 |
+
attention_mask = (input_ids > -1000000).to(torch.long)
|
336 |
+
|
337 |
+
return BatchFeature(data={
|
338 |
+
"input_ids": input_ids,
|
339 |
+
"attention_mask": attention_mask,
|
340 |
+
"pixel_values": images['pixel_values'],
|
341 |
+
"image_sizes": images['image_sizes']
|
342 |
+
})
|
343 |
+
|
344 |
+
def _interleave_sequences(self, seq1, seq2):
|
345 |
+
"""Interleave two sequences, padding second sequence if needed."""
|
346 |
+
if len(seq1) > len(seq2):
|
347 |
+
seq2.append([])
|
348 |
+
return [item for pair in zip(seq1, seq2) for item in pair]
|
349 |
+
|
350 |
+
def batch_decode(self, *args, **kwargs):
|
351 |
+
"""Decode a batch of token IDs to text."""
|
352 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
353 |
+
|
354 |
+
def decode(self, *args, **kwargs):
|
355 |
+
"""Decode token IDs to text."""
|
356 |
+
return self.tokenizer.decode(*args, **kwargs)
|
357 |
+
|
358 |
+
@property
|
359 |
+
def model_input_names(self):
|
360 |
+
"""Get combined input names from both processors."""
|
361 |
+
return list(dict.fromkeys(
|
362 |
+
self.tokenizer.model_input_names +
|
363 |
+
self.image_processor.model_input_names
|
364 |
+
))
|
365 |
+
|
366 |
+
# Register the processor with AutoImageProcessor
|
367 |
+
AutoImageProcessor.register("SpecVisionImageProcessor", SpecVisionImageProcessor)
|