|
--- |
|
license: gemma |
|
base_model: google/gemma-2-2b |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: collapse_gemma-2-2b_hs2_accumulate_iter2_sftsd1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# collapse_gemma-2-2b_hs2_accumulate_iter2_sftsd1 |
|
|
|
This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0880 |
|
- Num Input Tokens Seen: 10886024 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 1 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:-----------------:| |
|
| No log | 0 | 0 | 1.3909 | 0 | |
|
| 1.4818 | 0.0264 | 5 | 1.3328 | 284168 | |
|
| 1.4014 | 0.0528 | 10 | 1.2146 | 570464 | |
|
| 1.247 | 0.0792 | 15 | 1.1552 | 859552 | |
|
| 1.2344 | 0.1056 | 20 | 1.1316 | 1139712 | |
|
| 1.0727 | 0.1321 | 25 | 1.1148 | 1425952 | |
|
| 1.0489 | 0.1585 | 30 | 1.1144 | 1712584 | |
|
| 1.0564 | 0.1849 | 35 | 1.1157 | 1999000 | |
|
| 1.0475 | 0.2113 | 40 | 1.1221 | 2278656 | |
|
| 1.0397 | 0.2377 | 45 | 1.1144 | 2567096 | |
|
| 0.9626 | 0.2641 | 50 | 1.1186 | 2858408 | |
|
| 0.9346 | 0.2905 | 55 | 1.1198 | 3145312 | |
|
| 0.9472 | 0.3169 | 60 | 1.1231 | 3435992 | |
|
| 0.9308 | 0.3433 | 65 | 1.1217 | 3729256 | |
|
| 0.7938 | 0.3698 | 70 | 1.1223 | 4015952 | |
|
| 0.8555 | 0.3962 | 75 | 1.1211 | 4305600 | |
|
| 0.8708 | 0.4226 | 80 | 1.1195 | 4599712 | |
|
| 0.8453 | 0.4490 | 85 | 1.1167 | 4888360 | |
|
| 0.7371 | 0.4754 | 90 | 1.1169 | 5180504 | |
|
| 0.8233 | 0.5018 | 95 | 1.1128 | 5473352 | |
|
| 0.8823 | 0.5282 | 100 | 1.1131 | 5765104 | |
|
| 0.623 | 0.5546 | 105 | 1.1111 | 6052128 | |
|
| 0.7361 | 0.5810 | 110 | 1.1069 | 6343856 | |
|
| 0.8444 | 0.6075 | 115 | 1.1103 | 6631416 | |
|
| 0.7777 | 0.6339 | 120 | 1.1068 | 6921552 | |
|
| 0.6832 | 0.6603 | 125 | 1.1054 | 7209048 | |
|
| 0.8106 | 0.6867 | 130 | 1.1039 | 7489664 | |
|
| 0.6772 | 0.7131 | 135 | 1.1007 | 7782048 | |
|
| 0.7388 | 0.7395 | 140 | 1.0992 | 8068440 | |
|
| 0.8197 | 0.7659 | 145 | 1.0968 | 8360312 | |
|
| 0.6981 | 0.7923 | 150 | 1.0959 | 8648720 | |
|
| 0.6736 | 0.8188 | 155 | 1.0956 | 8940416 | |
|
| 0.7139 | 0.8452 | 160 | 1.0935 | 9223368 | |
|
| 0.8445 | 0.8716 | 165 | 1.0927 | 9508432 | |
|
| 0.6475 | 0.8980 | 170 | 1.0919 | 9797464 | |
|
| 0.7119 | 0.9244 | 175 | 1.0904 | 10086248 | |
|
| 0.8095 | 0.9508 | 180 | 1.0897 | 10378552 | |
|
| 0.6255 | 0.9772 | 185 | 1.0894 | 10659304 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|