RonTon05's picture
End of training
5358ee5 verified
metadata
library_name: transformers
license: agpl-3.0
base_model: vinai/phobert-base-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: PhishLang_PhoBERTCNN_10k
    results: []

PhishLang_PhoBERTCNN_10k

This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3681
  • Accuracy: 0.9075
  • F1: 0.9064
  • Precision: 0.9103
  • Recall: 0.9044

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6931 0.8 100 0.4079 0.8915 0.8893 0.9001 0.8859
0.6931 1.6 200 0.3679 0.9055 0.9041 0.9102 0.9015
0.4782 2.4 300 0.3651 0.9015 0.9004 0.9032 0.8989
0.4782 3.2 400 0.3533 0.908 0.9070 0.9101 0.9052
0.3495 4.0 500 0.3650 0.9085 0.9068 0.9160 0.9036
0.3495 4.8 600 0.3562 0.9115 0.9102 0.9164 0.9075
0.3495 5.6 700 0.3595 0.905 0.9042 0.9052 0.9035
0.3147 6.4 800 0.3666 0.902 0.9013 0.9018 0.9009
0.3147 7.2 900 0.3666 0.911 0.9097 0.9154 0.9072
0.2962 8.0 1000 0.3618 0.908 0.9070 0.9097 0.9055
0.2962 8.8 1100 0.3680 0.9095 0.9083 0.9127 0.9062
0.2962 9.6 1200 0.3681 0.9075 0.9064 0.9103 0.9044

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.21.0