See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: bigscience/bloomz-560m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 0fc9bc0ad0d49381_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0fc9bc0ad0d49381_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/d156f76d-6606-4266-96da-a418e1a226c2
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 8832
micro_batch_size: 4
mlflow_experiment_name: /tmp/0fc9bc0ad0d49381_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
use_rslora: true
val_set_size: 0.00983438889107431
wandb_entity: null
wandb_mode: online
wandb_name: 7af274cb-a9a3-45b8-b6c3-b1c837d298d4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7af274cb-a9a3-45b8-b6c3-b1c837d298d4
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
d156f76d-6606-4266-96da-a418e1a226c2
This model is a fine-tuned version of bigscience/bloomz-560m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0438
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 8832
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
23.4576 | 0.0001 | 1 | 2.8683 |
19.7937 | 0.0064 | 100 | 2.4114 |
20.4259 | 0.0127 | 200 | 2.3545 |
18.2863 | 0.0191 | 300 | 2.3214 |
19.4042 | 0.0254 | 400 | 2.2988 |
18.4537 | 0.0318 | 500 | 2.2798 |
15.74 | 0.0381 | 600 | 2.2650 |
18.8956 | 0.0445 | 700 | 2.2526 |
17.846 | 0.0509 | 800 | 2.2435 |
17.2099 | 0.0572 | 900 | 2.2312 |
18.1726 | 0.0636 | 1000 | 2.2239 |
17.4762 | 0.0699 | 1100 | 2.2156 |
17.8853 | 0.0763 | 1200 | 2.2092 |
18.1147 | 0.0826 | 1300 | 2.2030 |
17.74 | 0.0890 | 1400 | 2.1963 |
18.1605 | 0.0953 | 1500 | 2.1899 |
18.1325 | 0.1017 | 1600 | 2.1850 |
18.0614 | 0.1081 | 1700 | 2.1802 |
17.757 | 0.1144 | 1800 | 2.1778 |
17.6561 | 0.1208 | 1900 | 2.1716 |
18.2847 | 0.1271 | 2000 | 2.1688 |
17.6908 | 0.1335 | 2100 | 2.1631 |
18.241 | 0.1398 | 2200 | 2.1593 |
16.251 | 0.1462 | 2300 | 2.1577 |
17.7695 | 0.1526 | 2400 | 2.1521 |
17.2459 | 0.1589 | 2500 | 2.1489 |
18.3262 | 0.1653 | 2600 | 2.1450 |
16.7641 | 0.1716 | 2700 | 2.1425 |
16.4128 | 0.1780 | 2800 | 2.1371 |
15.7316 | 0.1843 | 2900 | 2.1358 |
17.9185 | 0.1907 | 3000 | 2.1317 |
16.555 | 0.1971 | 3100 | 2.1280 |
15.8804 | 0.2034 | 3200 | 2.1261 |
17.6585 | 0.2098 | 3300 | 2.1229 |
17.4634 | 0.2161 | 3400 | 2.1184 |
17.5052 | 0.2225 | 3500 | 2.1192 |
17.4755 | 0.2288 | 3600 | 2.1174 |
18.0033 | 0.2352 | 3700 | 2.1110 |
16.3309 | 0.2415 | 3800 | 2.1089 |
16.633 | 0.2479 | 3900 | 2.1069 |
17.9653 | 0.2543 | 4000 | 2.1034 |
16.6872 | 0.2606 | 4100 | 2.1017 |
16.6698 | 0.2670 | 4200 | 2.0987 |
17.0016 | 0.2733 | 4300 | 2.0968 |
17.7949 | 0.2797 | 4400 | 2.0948 |
16.2796 | 0.2860 | 4500 | 2.0921 |
17.2325 | 0.2924 | 4600 | 2.0895 |
17.4596 | 0.2988 | 4700 | 2.0868 |
17.2106 | 0.3051 | 4800 | 2.0839 |
17.0064 | 0.3115 | 4900 | 2.0823 |
15.9642 | 0.3178 | 5000 | 2.0800 |
17.6006 | 0.3242 | 5100 | 2.0779 |
17.3074 | 0.3305 | 5200 | 2.0746 |
16.0723 | 0.3369 | 5300 | 2.0735 |
16.5184 | 0.3433 | 5400 | 2.0711 |
16.2517 | 0.3496 | 5500 | 2.0701 |
17.1206 | 0.3560 | 5600 | 2.0683 |
17.2825 | 0.3623 | 5700 | 2.0668 |
16.9153 | 0.3687 | 5800 | 2.0644 |
16.2446 | 0.3750 | 5900 | 2.0628 |
15.8944 | 0.3814 | 6000 | 2.0610 |
17.7732 | 0.3877 | 6100 | 2.0603 |
17.8103 | 0.3941 | 6200 | 2.0587 |
15.7341 | 0.4005 | 6300 | 2.0580 |
15.6502 | 0.4068 | 6400 | 2.0557 |
16.8526 | 0.4132 | 6500 | 2.0548 |
17.1581 | 0.4195 | 6600 | 2.0530 |
16.0818 | 0.4259 | 6700 | 2.0520 |
15.5948 | 0.4322 | 6800 | 2.0514 |
16.6084 | 0.4386 | 6900 | 2.0505 |
16.8273 | 0.4450 | 7000 | 2.0496 |
15.6169 | 0.4513 | 7100 | 2.0491 |
18.0275 | 0.4577 | 7200 | 2.0479 |
17.1104 | 0.4640 | 7300 | 2.0470 |
17.2611 | 0.4704 | 7400 | 2.0465 |
15.66 | 0.4767 | 7500 | 2.0461 |
15.8305 | 0.4831 | 7600 | 2.0450 |
15.9643 | 0.4895 | 7700 | 2.0455 |
17.4456 | 0.4958 | 7800 | 2.0441 |
16.9549 | 0.5022 | 7900 | 2.0445 |
15.9483 | 0.5085 | 8000 | 2.0437 |
15.8849 | 0.5149 | 8100 | 2.0439 |
16.6432 | 0.5212 | 8200 | 2.0436 |
16.6686 | 0.5276 | 8300 | 2.0434 |
16.7146 | 0.5339 | 8400 | 2.0431 |
16.051 | 0.5403 | 8500 | 2.0432 |
15.9274 | 0.5467 | 8600 | 2.0438 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for Romain-XV/d156f76d-6606-4266-96da-a418e1a226c2
Base model
bigscience/bloomz-560m