Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen1.5-0.5B-Chat
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - b0f300b6b09a2ba8_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/b0f300b6b09a2ba8_train_data.json
  type:
    field_input: my_solu
    field_instruction: prompt
    field_output: solution
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/baa021ed-7f27-42f3-8dde-6e74318e8961
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_steps: 3726
micro_batch_size: 4
mlflow_experiment_name: /tmp/b0f300b6b09a2ba8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 50fdbd7c-464a-4d56-a3ed-abec091ccab6
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 50fdbd7c-464a-4d56-a3ed-abec091ccab6
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

baa021ed-7f27-42f3-8dde-6e74318e8961

This model is a fine-tuned version of Qwen/Qwen1.5-0.5B-Chat on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1987

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 3726

Training results

Training Loss Epoch Step Validation Loss
1.3923 0.0002 1 1.4109
0.8141 0.0214 100 0.8870
0.7815 0.0428 200 0.8142
0.7717 0.0642 300 0.7634
0.7092 0.0856 400 0.7206
0.6155 0.1070 500 0.6825
0.7272 0.1284 600 0.6480
0.5709 0.1498 700 0.6154
0.5701 0.1712 800 0.5841
0.574 0.1926 900 0.5533
0.5339 0.2140 1000 0.5240
0.407 0.2354 1100 0.4956
0.4801 0.2568 1200 0.4689
0.4047 0.2783 1300 0.4438
0.4572 0.2997 1400 0.4212
0.3492 0.3211 1500 0.3985
0.3494 0.3425 1600 0.3752
0.38 0.3639 1700 0.3550
0.3508 0.3853 1800 0.3346
0.3265 0.4067 1900 0.3165
0.2892 0.4281 2000 0.3016
0.3141 0.4495 2100 0.2866
0.2954 0.4709 2200 0.2726
0.2968 0.4923 2300 0.2606
0.2706 0.5137 2400 0.2499
0.2689 0.5351 2500 0.2402
0.2072 0.5565 2600 0.2322
0.2147 0.5779 2700 0.2244
0.219 0.5993 2800 0.2175
0.2034 0.6207 2900 0.2129
0.1956 0.6421 3000 0.2093
0.1553 0.6635 3100 0.2053
0.2372 0.6849 3200 0.2028
0.1921 0.7063 3300 0.2009
0.2111 0.7277 3400 0.1996
0.2116 0.7491 3500 0.1990
0.2229 0.7705 3600 0.1987
0.235 0.7920 3700 0.1987

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Romain-XV/baa021ed-7f27-42f3-8dde-6e74318e8961

Adapter
(312)
this model