See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen1.5-0.5B-Chat
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b0f300b6b09a2ba8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b0f300b6b09a2ba8_train_data.json
type:
field_input: my_solu
field_instruction: prompt
field_output: solution
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/baa021ed-7f27-42f3-8dde-6e74318e8961
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_steps: 3726
micro_batch_size: 4
mlflow_experiment_name: /tmp/b0f300b6b09a2ba8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 50fdbd7c-464a-4d56-a3ed-abec091ccab6
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 50fdbd7c-464a-4d56-a3ed-abec091ccab6
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
baa021ed-7f27-42f3-8dde-6e74318e8961
This model is a fine-tuned version of Qwen/Qwen1.5-0.5B-Chat on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1987
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 3726
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3923 | 0.0002 | 1 | 1.4109 |
0.8141 | 0.0214 | 100 | 0.8870 |
0.7815 | 0.0428 | 200 | 0.8142 |
0.7717 | 0.0642 | 300 | 0.7634 |
0.7092 | 0.0856 | 400 | 0.7206 |
0.6155 | 0.1070 | 500 | 0.6825 |
0.7272 | 0.1284 | 600 | 0.6480 |
0.5709 | 0.1498 | 700 | 0.6154 |
0.5701 | 0.1712 | 800 | 0.5841 |
0.574 | 0.1926 | 900 | 0.5533 |
0.5339 | 0.2140 | 1000 | 0.5240 |
0.407 | 0.2354 | 1100 | 0.4956 |
0.4801 | 0.2568 | 1200 | 0.4689 |
0.4047 | 0.2783 | 1300 | 0.4438 |
0.4572 | 0.2997 | 1400 | 0.4212 |
0.3492 | 0.3211 | 1500 | 0.3985 |
0.3494 | 0.3425 | 1600 | 0.3752 |
0.38 | 0.3639 | 1700 | 0.3550 |
0.3508 | 0.3853 | 1800 | 0.3346 |
0.3265 | 0.4067 | 1900 | 0.3165 |
0.2892 | 0.4281 | 2000 | 0.3016 |
0.3141 | 0.4495 | 2100 | 0.2866 |
0.2954 | 0.4709 | 2200 | 0.2726 |
0.2968 | 0.4923 | 2300 | 0.2606 |
0.2706 | 0.5137 | 2400 | 0.2499 |
0.2689 | 0.5351 | 2500 | 0.2402 |
0.2072 | 0.5565 | 2600 | 0.2322 |
0.2147 | 0.5779 | 2700 | 0.2244 |
0.219 | 0.5993 | 2800 | 0.2175 |
0.2034 | 0.6207 | 2900 | 0.2129 |
0.1956 | 0.6421 | 3000 | 0.2093 |
0.1553 | 0.6635 | 3100 | 0.2053 |
0.2372 | 0.6849 | 3200 | 0.2028 |
0.1921 | 0.7063 | 3300 | 0.2009 |
0.2111 | 0.7277 | 3400 | 0.1996 |
0.2116 | 0.7491 | 3500 | 0.1990 |
0.2229 | 0.7705 | 3600 | 0.1987 |
0.235 | 0.7920 | 3700 | 0.1987 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for Romain-XV/baa021ed-7f27-42f3-8dde-6e74318e8961
Base model
Qwen/Qwen1.5-0.5B-Chat