Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2-0.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - aa33efdcea3f7395_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/aa33efdcea3f7395_train_data.json
  type:
    field_instruction: question
    field_output: answer
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/299af3f6-7367-4acd-8d81-81b0719cb2e4
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_steps: 2384
micro_batch_size: 4
mlflow_experiment_name: /tmp/aa33efdcea3f7395_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 300
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 694298ba-c6cc-4345-b0b4-84c5983d0048
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 694298ba-c6cc-4345-b0b4-84c5983d0048
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

299af3f6-7367-4acd-8d81-81b0719cb2e4

This model is a fine-tuned version of unsloth/Qwen2-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8383

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 2384

Training results

Training Loss Epoch Step Validation Loss
2.3285 0.0004 1 2.2895
1.8466 0.0569 150 1.9426
1.8839 0.1139 300 1.9219
1.9803 0.1708 450 1.9068
1.8772 0.2277 600 1.8959
1.9223 0.2847 750 1.8859
1.8185 0.3416 900 1.8769
1.8538 0.3985 1050 1.8689
1.8921 0.4554 1200 1.8628
1.6638 0.5124 1350 1.8562
1.8098 0.5693 1500 1.8506
1.8962 0.6262 1650 1.8466
1.8684 0.6832 1800 1.8429
1.8269 0.7401 1950 1.8403
1.9265 0.7970 2100 1.8389
1.7941 0.8540 2250 1.8383

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Romain-XV/299af3f6-7367-4acd-8d81-81b0719cb2e4

Adapter
(326)
this model