See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2-0.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- aa33efdcea3f7395_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/aa33efdcea3f7395_train_data.json
type:
field_instruction: question
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/299af3f6-7367-4acd-8d81-81b0719cb2e4
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_steps: 2384
micro_batch_size: 4
mlflow_experiment_name: /tmp/aa33efdcea3f7395_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 300
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 694298ba-c6cc-4345-b0b4-84c5983d0048
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 694298ba-c6cc-4345-b0b4-84c5983d0048
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
299af3f6-7367-4acd-8d81-81b0719cb2e4
This model is a fine-tuned version of unsloth/Qwen2-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8383
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2384
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.3285 | 0.0004 | 1 | 2.2895 |
1.8466 | 0.0569 | 150 | 1.9426 |
1.8839 | 0.1139 | 300 | 1.9219 |
1.9803 | 0.1708 | 450 | 1.9068 |
1.8772 | 0.2277 | 600 | 1.8959 |
1.9223 | 0.2847 | 750 | 1.8859 |
1.8185 | 0.3416 | 900 | 1.8769 |
1.8538 | 0.3985 | 1050 | 1.8689 |
1.8921 | 0.4554 | 1200 | 1.8628 |
1.6638 | 0.5124 | 1350 | 1.8562 |
1.8098 | 0.5693 | 1500 | 1.8506 |
1.8962 | 0.6262 | 1650 | 1.8466 |
1.8684 | 0.6832 | 1800 | 1.8429 |
1.8269 | 0.7401 | 1950 | 1.8403 |
1.9265 | 0.7970 | 2100 | 1.8389 |
1.7941 | 0.8540 | 2250 | 1.8383 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for Romain-XV/299af3f6-7367-4acd-8d81-81b0719cb2e4
Base model
unsloth/Qwen2-0.5B-Instruct