
Model Metrics
YOLO11m summary (fused): 303 layers, 20,037,742 parameters, 0 gradients, 67.7 GFLOPs
Class | Images | Instances | Box(P) | R | mAP50 | mAP50-95) |
---|---|---|---|---|---|---|
all | 110 | 256 | 0.969 | 0.977 | 0.989 | 0.801 |
5 BGN | 10 | 35 | 0.969 | 0.9 | 0.975 | 0.712 |
10 BGN | 9 | 29 | 0.96 | 1 | 0.976 | 0.773 |
20 BGN | 7 | 25 | 0.996 | 0.96 | 0.993 | 0.795 |
50 BGN | 7 | 24 | 0.996 | 0.966 | 0.989 | 0.801 |
100 BGN | 13 | 41 | 0.975 | 0.955 | 0.982 | 0.823 |
5 EUR | 18 | 19 | 0.863 | 0.991 | 0.986 | 0.837 |
10 EUR | 14 | 38 | 0.998 | 1 | 0.995 | 0.787 |
20 EUR | 15 | 15 | 0.986 | 1 | 0.995 | 0.861 |
50 EUR | 7 | 7 | 0.97 | 1 | 0.995 | 0.920 |
100 EUR | 10 | 23 | 0.97 | 1 | 0.995 | 0.675 |







Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for Rokyuto/BanknotesRecognition
Base model
Ultralytics/YOLO11Dataset used to train Rokyuto/BanknotesRecognition
Evaluation results
- Precision on Banknotesself-reported0.976
- Recall on Banknotesself-reported0.974
- mAP50 on Banknotesself-reported0.991
- mAP50-95 on Banknotesself-reported0.789