output
This model is a fine-tuned version of PlanTL-GOB-ES/bsc-bio-ehr-es on the Rodrigo1771/drugtemist-fasttext-75-ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0044
- Precision: 0.9448
- Recall: 0.9596
- F1: 0.9521
- Accuracy: 0.9991
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 488 | 0.0039 | 0.9005 | 0.9733 | 0.9355 | 0.9988 |
0.0189 | 2.0 | 976 | 0.0032 | 0.9239 | 0.9596 | 0.9414 | 0.9989 |
0.0027 | 3.0 | 1464 | 0.0044 | 0.9192 | 0.9623 | 0.9403 | 0.9989 |
0.0015 | 4.0 | 1952 | 0.0036 | 0.9424 | 0.9467 | 0.9445 | 0.9991 |
0.0007 | 5.0 | 2440 | 0.0044 | 0.9448 | 0.9596 | 0.9521 | 0.9991 |
0.0004 | 6.0 | 2928 | 0.0055 | 0.9594 | 0.9338 | 0.9464 | 0.9990 |
0.0002 | 7.0 | 3416 | 0.0049 | 0.9397 | 0.9458 | 0.9427 | 0.9990 |
0.0002 | 8.0 | 3904 | 0.0053 | 0.9434 | 0.9504 | 0.9469 | 0.9991 |
0.0001 | 9.0 | 4392 | 0.0050 | 0.9434 | 0.9494 | 0.9464 | 0.9991 |
0.0001 | 10.0 | 4880 | 0.0052 | 0.9417 | 0.9494 | 0.9455 | 0.9991 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 105
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Rodrigo1771/bsc-bio-ehr-es-drugtemist-fasttext-75-ner
Base model
PlanTL-GOB-ES/bsc-bio-ehr-esDataset used to train Rodrigo1771/bsc-bio-ehr-es-drugtemist-fasttext-75-ner
Evaluation results
- Precision on Rodrigo1771/drugtemist-fasttext-75-nervalidation set self-reported0.945
- Recall on Rodrigo1771/drugtemist-fasttext-75-nervalidation set self-reported0.960
- F1 on Rodrigo1771/drugtemist-fasttext-75-nervalidation set self-reported0.952
- Accuracy on Rodrigo1771/drugtemist-fasttext-75-nervalidation set self-reported0.999