See axolotl config
axolotl version: 0.6.0
adapter: lora
base_model: numind/NuExtract-v1.5
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b4f0c40bccb7a455_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b4f0c40bccb7a455_train_data.json
type:
field_instruction: prompt
field_output: response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: Rodo-Sami/8ea5efad-f48a-417f-9324-cdc474b7c038
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1500
micro_batch_size: 2
mlflow_experiment_name: /tmp/b4f0c40bccb7a455_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: offline
wandb_name: bb8e283f-cc31-4e3a-b4c0-0d67dcaea216
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: bb8e283f-cc31-4e3a-b4c0-0d67dcaea216
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
8ea5efad-f48a-417f-9324-cdc474b7c038
This model is a fine-tuned version of numind/NuExtract-v1.5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0783
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 477
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.274 | 0.2516 | 120 | 1.0973 |
0.9612 | 0.5031 | 240 | 1.0751 |
1.0177 | 0.7547 | 360 | 1.0783 |
Framework versions
- PEFT 0.14.0
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 53
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.