swinv2-tiny-patch4-window8-256-dmae-humeda-DAV56

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8748
  • Accuracy: 0.7308

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8421 4 1.5618 0.3269
No log 1.8421 8 1.5396 0.4423
1.7209 2.8421 12 1.5124 0.3077
1.7209 3.8421 16 1.4679 0.3269
1.7209 4.8421 20 1.4130 0.3462
1.5864 5.8421 24 1.3107 0.5385
1.5864 6.8421 28 1.2112 0.5385
1.5864 7.8421 32 1.1194 0.5962
1.2629 8.8421 36 1.0422 0.5962
1.2629 9.8421 40 0.9706 0.6538
1.2629 10.8421 44 0.9638 0.6538
0.951 11.8421 48 0.9906 0.6154
0.951 12.8421 52 0.9890 0.5962
0.951 13.8421 56 0.9110 0.6538
0.7947 14.8421 60 0.9282 0.6731
0.7947 15.8421 64 0.9315 0.6538
0.7947 16.8421 68 0.9230 0.6154
0.7143 17.8421 72 0.9068 0.6538
0.7143 18.8421 76 0.8997 0.6154
0.7143 19.8421 80 0.8648 0.6923
0.6329 20.8421 84 0.8624 0.6538
0.6329 21.8421 88 0.8737 0.6154
0.6329 22.8421 92 0.8636 0.6731
0.5508 23.8421 96 0.8545 0.6538
0.5508 24.8421 100 0.8617 0.6731
0.5508 25.8421 104 0.8635 0.6346
0.5009 26.8421 108 0.8650 0.6346
0.5009 27.8421 112 0.8638 0.6538
0.5009 28.8421 116 0.8730 0.6538
0.5286 29.8421 120 0.8886 0.6346
0.5286 30.8421 124 0.8827 0.6538
0.5286 31.8421 128 0.8748 0.7308
0.4559 32.8421 132 0.8671 0.7115
0.4559 33.8421 136 0.8727 0.6731
0.4559 34.8421 140 0.8755 0.7115
0.4704 35.8421 144 0.8760 0.7308
0.4704 36.8421 148 0.8786 0.7308
0.4704 37.8421 152 0.8781 0.7308
0.4582 38.8421 156 0.8771 0.7308
0.4582 39.8421 160 0.8754 0.7308
0.4582 40.8421 164 0.8741 0.7308
0.4538 41.8421 168 0.8742 0.7308
0.4538 42.8421 172 0.8740 0.7308
0.4538 43.8421 176 0.8740 0.7308
0.4476 44.8421 180 0.8741 0.7308

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV56

Finetuned
(120)
this model