swinv2-tiny-patch4-window8-256-dmae-humeda-DAV55

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7678
  • Accuracy: 0.8068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.7159 0.0682
1.4016 2.0 12 1.6803 0.125
1.4016 3.0 18 1.5242 0.2955
1.105 4.0 24 1.2325 0.4318
1.105 5.0 30 1.2531 0.5114
0.8077 6.0 36 1.1026 0.5
0.8077 7.0 42 0.9852 0.5909
0.6405 8.0 48 0.8993 0.7045
0.6405 9.0 54 0.9155 0.6364
0.5807 10.0 60 1.0444 0.5568
0.5807 11.0 66 0.7696 0.7727
0.511 12.0 72 0.9046 0.7159
0.511 13.0 78 0.7709 0.7727
0.4578 14.0 84 0.8067 0.7273
0.4578 15.0 90 0.8394 0.7614
0.357 16.0 96 0.7473 0.7727
0.357 17.0 102 0.7678 0.8068
0.313 18.0 108 0.7593 0.7614
0.313 19.0 114 0.7597 0.7841
0.2741 20.0 120 0.7861 0.75
0.2741 21.0 126 0.7381 0.7386
0.2508 22.0 132 0.7422 0.7955
0.2508 23.0 138 0.7751 0.75
0.1992 24.0 144 0.7758 0.7386
0.1992 25.0 150 0.7272 0.7841
0.1897 26.0 156 0.7843 0.7841
0.1897 27.0 162 0.7606 0.7727
0.2024 28.0 168 0.7456 0.7955
0.2024 29.0 174 0.7653 0.7955
0.172 30.0 180 0.7677 0.7727
0.172 31.0 186 0.7421 0.7614
0.1561 32.0 192 0.7326 0.7614
0.1561 33.0 198 0.7541 0.7614
0.1472 34.0 204 0.7635 0.7727
0.1472 35.0 210 0.7504 0.7727
0.1402 36.0 216 0.7601 0.7727
0.1402 37.0 222 0.7683 0.7841
0.1414 38.0 228 0.7707 0.7841
0.1414 39.0 234 0.7727 0.7727
0.1344 40.0 240 0.7721 0.7727
0.1344 41.0 246 0.7715 0.7727
0.1344 41.7619 250 0.7712 0.7727

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
198
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV55

Finetuned
(120)
this model