swinv2-tiny-patch4-window8-256-dmae-humeda-DAV53
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8283
- Accuracy: 0.7045
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.6493 | 0.0909 |
No log | 2.0 | 12 | 1.5699 | 0.3864 |
No log | 3.0 | 18 | 1.4384 | 0.4205 |
No log | 4.0 | 24 | 1.2748 | 0.4091 |
No log | 5.0 | 30 | 1.2428 | 0.5114 |
No log | 6.0 | 36 | 1.0682 | 0.6023 |
No log | 7.0 | 42 | 1.2919 | 0.5 |
No log | 8.0 | 48 | 0.9125 | 0.6591 |
No log | 9.0 | 54 | 1.0308 | 0.5568 |
No log | 10.0 | 60 | 0.8505 | 0.6705 |
No log | 11.0 | 66 | 0.9354 | 0.625 |
No log | 12.0 | 72 | 0.8283 | 0.7045 |
No log | 13.0 | 78 | 0.8508 | 0.6705 |
No log | 14.0 | 84 | 0.8072 | 0.6477 |
No log | 15.0 | 90 | 0.8574 | 0.6477 |
No log | 16.0 | 96 | 0.8278 | 0.625 |
0.7213 | 17.0 | 102 | 0.8671 | 0.6364 |
0.7213 | 18.0 | 108 | 0.8787 | 0.6364 |
0.7213 | 19.0 | 114 | 0.8215 | 0.6818 |
0.7213 | 20.0 | 120 | 0.8018 | 0.6932 |
0.7213 | 21.0 | 126 | 0.8278 | 0.6477 |
0.7213 | 22.0 | 132 | 0.8424 | 0.6364 |
0.7213 | 23.0 | 138 | 0.8392 | 0.625 |
0.7213 | 24.0 | 144 | 0.8371 | 0.625 |
0.7213 | 25.0 | 150 | 0.8373 | 0.625 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 215
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV53
Base model
microsoft/swinv2-tiny-patch4-window8-256