swinv2-tiny-patch4-window8-256-dmae-humeda-DAV43

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0777
  • Accuracy: 0.6374

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 42

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 1.5998 0.1319
No log 2.0 4 1.4960 0.4176
No log 3.0 6 1.3659 0.4396
No log 4.0 8 1.3074 0.4286
No log 5.0 10 1.2850 0.4286
9.4768 6.0 12 1.2592 0.4396
9.4768 7.0 14 1.2446 0.4505
9.4768 8.0 16 1.2326 0.5495
9.4768 9.0 18 1.2084 0.5714
9.4768 10.0 20 1.1779 0.5604
9.4768 11.0 22 1.1483 0.5604
7.6512 12.0 24 1.1232 0.5824
7.6512 13.0 26 1.1042 0.6044
7.6512 14.0 28 1.0891 0.6154
7.6512 15.0 30 1.0777 0.6374
7.6512 16.0 32 1.0686 0.6264
7.6512 17.0 34 1.0623 0.6264
6.5906 18.0 36 1.0582 0.6264
6.5906 19.0 38 1.0559 0.6154
6.5906 20.0 40 1.0550 0.6154
6.5906 21.0 42 1.0548 0.6154

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV43

Finetuned
(120)
this model