swinv2-tiny-patch4-window8-256-dmae-humeda-DAV41

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9385
  • Accuracy: 0.6818

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 2 1.4874 0.4318
No log 2.0 4 1.3560 0.4432
No log 3.0 6 1.3117 0.4432
No log 4.0 8 1.2763 0.4432
No log 5.0 10 1.2602 0.5682
8.9996 6.0 12 1.2348 0.6023
8.9996 7.0 14 1.1982 0.5795
8.9996 8.0 16 1.1592 0.6136
8.9996 9.0 18 1.1142 0.625
8.9996 10.0 20 1.0682 0.6364
8.9996 11.0 22 1.0256 0.6477
7.429 12.0 24 0.9843 0.6705
7.429 13.0 26 0.9602 0.6705
7.429 14.0 28 0.9452 0.6591
7.429 15.0 30 0.9385 0.6818
7.429 16.0 32 0.9320 0.6705
7.429 17.0 34 0.9285 0.6477
6.2752 18.0 36 0.9239 0.6591
6.2752 19.0 38 0.9214 0.6818
6.2752 20.0 40 0.9206 0.6818

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV41

Finetuned
(120)
this model