File size: 4,737 Bytes
a792aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e06650b
 
 
a792aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b28c9f4
a792aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b28c9f4
 
 
 
 
 
 
 
a792aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
datasets:
- Riksarkivet/trolldomskommissionen_seg
- Riksarkivet/svea_hovratt_seg
- Riksarkivet/krigshovrattens_dombocker_seg
- Riksarkivet/jonkopings_radhusratts_och_magistrat_seg
- Riksarkivet/gota_hovratt_seg
- Riksarkivet/frihetstidens_utskottshandlingar_seg
- Riksarkivet/bergskollegium_relationer_och_skrivelser_seg
- Riksarkivet/bergskollegium_advokatfiskalskontoret_seg
tags:
- instance segmentation
- text regions
- handwritten
- htr

library_name: htrflow

---

# Yolov9-textregions-handwritten

<!-- Provide a quick summary of what the model is/does. -->

A yolov9 instance segmentation model for segmenting text-regions in handwritten running-text documents


## Model Details

### Model Description

This model was developed for segmenting text-regions in handwritten running-text documents. It is meant to be implemented in an HTR-pipeline
where one first segment text-regions, then text-lines within the regions, and then feed these text-lines to an HTR-model.



- **Developed by:** The Swedish National Archives
- **Model type:** yolov9
- **License:** [More Information Needed]

### Model Sources [optional]


- **Repository:** [yolov9-regions-1](https://huggingface.co/Riksarkivet/yolov9-regions-1)
- **Paper:** [YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)

## Uses


### Direct Use

Segment text-regions in handwritten running-text documents

### Downstream Use [optional]

As part of an HTR-pipeline for transcribing entire pages of handwritten running-text documents. See [Swedish Lion Libre](https://huggingface.co/Riksarkivet/trocr-base-handwritten-hist-swe-2)
for example usage with the [HTRflow package](https://github.com/AI-Riksarkivet/htrflow)


## How to Get Started with the Model

### How to Load and Use the YOLOv9 Instance Segmentation Model

Below is the Python code to load and use the trained YOLOv9 instance segmentation model using the Ultralytics repo:

```python
import torch
from ultralytics import YOLO

# Load the trained YOLOv9 model
model = YOLO('path/to/your/model.pt')  # Update with the correct path to your trained model

# Load an image
img = 'path/to/your/image.jpg'  # Update with the path to the image you want to use

# Perform instance segmentation
results = model(img)

# Display results
results.show()  # Show image with predicted masks

# To get the raw predictions (bounding boxes, masks, etc.)
for result in results:
    print(result.boxes)  # Bounding boxes
    print(result.masks)  # Segmentation masks
```

### Usage with the HTRflow package

See the model card for [Swedish Lion Libre](https://huggingface.co/Riksarkivet/trocr-base-handwritten-hist-swe-2)
for example usage with the [HTRflow package](https://github.com/AI-Riksarkivet/htrflow), or refer to the documentation for 
[HTRflow](https://github.com/AI-Riksarkivet/htrflow)

## Training Details

### Training Data

[Trolldomskommissionen](https://huggingface.co/datasets/Riksarkivet/trolldomskommissionen_seg)  
[Svea Hovrätt](https://huggingface.co/datasets/Riksarkivet/svea_hovratt_seg)  
[Krigshovrättens domböcker](https://huggingface.co/datasets/Riksarkivet/krigshovrattens_dombocker_seg)  
[Jönköpings rådhusrätt och magistrat](https://huggingface.co/datasets/Riksarkivet/jonkopings_radhusratts_och_magistrat_seg)  
[Göta hovrätt](https://huggingface.co/datasets/Riksarkivet/gota_hovratt_seg)  
[Frihetstidens utskottshandlingar](https://huggingface.co/datasets/Riksarkivet/frihetstidens_utskottshandlingar_seg)  
[Bergskollegium relationer och skrivelser](https://huggingface.co/datasets/Riksarkivet/bergskollegium_relationer_och_skrivelser_seg)  
[Bergskollegium advokatfiskalkontoret](https://huggingface.co/datasets/Riksarkivet/bergskollegium_advokatfiskalskontoret_seg)  



### Training Procedure


#### Training Hyperparameters

See [training config](https://huggingface.co/Riksarkivet/yolov9-regions-1/blob/main/args.yaml) at model repo


## Evaluation

See [training results](https://huggingface.co/Riksarkivet/yolov9-regions-1/blob/main/results.csv)


#### Metrics

Standard metrics for instance segmentation. Note that evaluation of segmentation as part of an HTR-pipeline should be measured by what effect it
has on the following HTR, that is, CER and WER. For implementation and evaluation of entire HTR-pipelines, please check out [HTRflow](https://github.com/AI-Riksarkivet/htrflow),
the Swedish National Archive's open-source package for HTR and OCR projects.


### Model Architecture and Objective

yolov9

#### Software

[Ultralytics](https://github.com/ultralytics)

## Citation [optional]

[YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)