Sneriko commited on
Commit
a792aa8
·
verified ·
1 Parent(s): 4d79587

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +136 -0
README.md ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - Riksarkivet/trolldomskommissionen_seg
4
+ - Riksarkivet/svea_hovratt_seg
5
+ - Riksarkivet/krigshovrattens_dombocker_seg
6
+ - Riksarkivet/jonkopings_radhusratts_och_magistrat_seg
7
+ - Riksarkivet/gota_hovratt_seg
8
+ - Riksarkivet/frihetstidens_utskottshandlingar_seg
9
+ - Riksarkivet/bergskollegium_relationer_och_skrivelser_seg
10
+ - Riksarkivet/bergskollegium_advokatfiskalskontoret_seg
11
+ tags:
12
+ - instance segmentation
13
+ - text regions
14
+ - handwritten
15
+ - htr
16
+ ---
17
+
18
+ # Yolov9-textregions-handwritten
19
+
20
+ <!-- Provide a quick summary of what the model is/does. -->
21
+
22
+ A yolov9 instance segmentation model for segmenting text-regions in handwritten running-text documents
23
+
24
+
25
+ ## Model Details
26
+
27
+ ### Model Description
28
+
29
+ This model was developed for segmenting text-regions in handwritten running-text documents. It is meant to be implemented in an HTR-pipeline
30
+ where one first segment text-regions, then text-lines within the regions, and then feed these text-lines to an HTR-model.
31
+
32
+
33
+
34
+ - **Developed by:** The Swedish National Archives
35
+ - **Model type:** yolov9
36
+ - **License:** [More Information Needed]
37
+
38
+ ### Model Sources [optional]
39
+
40
+
41
+ - **Repository:** [yolov9-regions-1](https://huggingface.co/Riksarkivet/yolov9-regions-1)
42
+ - **Paper [optional]:** [YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)
43
+
44
+ ## Uses
45
+
46
+
47
+ ### Direct Use
48
+
49
+ Segment text-regions in handwritten running-text documents
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ As part of an HTR-pipeline for transcribing entire pages of handwritten running-text documents. See [Swedish Lion Libre](https://huggingface.co/Riksarkivet/trocr-base-handwritten-hist-swe-2)
54
+ for example usage with the [HTRflow package](https://github.com/AI-Riksarkivet/htrflow)
55
+
56
+
57
+ ## How to Get Started with the Model
58
+
59
+ ### How to Load and Use the YOLOv9 Instance Segmentation Model
60
+
61
+ Below is the Python code to load and use the trained YOLOv9 instance segmentation model using the Ultralytics repo:
62
+
63
+ ```python
64
+ import torch
65
+ from ultralytics import YOLO
66
+
67
+ # Load the trained YOLOv9 model
68
+ model = YOLO('path/to/your/model.pt') # Update with the correct path to your trained model
69
+
70
+ # Load an image
71
+ img = 'path/to/your/image.jpg' # Update with the path to the image you want to use
72
+
73
+ # Perform instance segmentation
74
+ results = model(img)
75
+
76
+ # Display results
77
+ results.show() # Show image with predicted masks
78
+
79
+ # To get the raw predictions (bounding boxes, masks, etc.)
80
+ for result in results:
81
+ print(result.boxes) # Bounding boxes
82
+ print(result.masks) # Segmentation masks
83
+ ```
84
+
85
+ ### Usage with the HTRflow package
86
+
87
+ See the model card for [Swedish Lion Libre](https://huggingface.co/Riksarkivet/trocr-base-handwritten-hist-swe-2)
88
+ for example usage with the [HTRflow package](https://github.com/AI-Riksarkivet/htrflow), or refer to the documentation for
89
+ [HTRflow](https://github.com/AI-Riksarkivet/htrflow)
90
+
91
+ ## Training Details
92
+
93
+ ### Training Data
94
+
95
+ [Trolldomskommissionen](https://huggingface.co/datasets/Riksarkivet/trolldomskommissionen_seg)
96
+ [Svea Hovrätt](https://huggingface.co/datasets/Riksarkivet/svea_hovratt_seg)
97
+ [Krigshovrättens domböcker](https://huggingface.co/datasets/Riksarkivet/krigshovrattens_dombocker_seg)
98
+ [Jönköpings rådhusrätt och magistrat](https://huggingface.co/datasets/Riksarkivet/jonkopings_radhusratts_och_magistrat_seg)
99
+ [Göta hovrätt](https://huggingface.co/datasets/Riksarkivet/gota_hovratt_seg)
100
+ [Frihetstidens utskottshandlingar](https://huggingface.co/datasets/Riksarkivet/frihetstidens_utskottshandlingar_seg)
101
+ [Bergskollegium relationer och skrivelser](https://huggingface.co/datasets/Riksarkivet/bergskollegium_relationer_och_skrivelser_seg)
102
+ [Bergskollegium advokatfiskalkontoret](https://huggingface.co/datasets/Riksarkivet/bergskollegium_advokatfiskalskontoret_seg)
103
+
104
+
105
+
106
+ ### Training Procedure
107
+
108
+
109
+ #### Training Hyperparameters
110
+
111
+ See [training config](https://huggingface.co/Riksarkivet/yolov9-regions-1/blob/main/args.yaml) at model repo
112
+
113
+
114
+ ## Evaluation
115
+
116
+ See [training results](https://huggingface.co/Riksarkivet/yolov9-regions-1/blob/main/results.csv)
117
+
118
+
119
+ #### Metrics
120
+
121
+ Standard metrics for instance segmentation. Note that evaluation of segmentation as part of an HTR-pipeline should be measured by what effect it
122
+ has on the following HTR, that is, CER and WER. For implementation and evaluation of entire HTR-pipelines, please check out [HTRflow](https://github.com/AI-Riksarkivet/htrflow),
123
+ the Swedish National Archive's open-source package for HTR and OCR projects.
124
+
125
+
126
+ ### Model Architecture and Objective
127
+
128
+ yolov9
129
+
130
+ #### Software
131
+
132
+ [Ultralytics](https://github.com/ultralytics)
133
+
134
+ ## Citation [optional]
135
+
136
+ [YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)