YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
mistral-1L-tiny - GGUF
- Model creator: https://huggingface.co/nilq/
- Original model: https://huggingface.co/nilq/mistral-1L-tiny/
Name | Quant method | Size |
---|---|---|
mistral-1L-tiny.Q2_K.gguf | Q2_K | 0.02GB |
mistral-1L-tiny.IQ3_XS.gguf | IQ3_XS | 0.02GB |
mistral-1L-tiny.IQ3_S.gguf | IQ3_S | 0.02GB |
mistral-1L-tiny.Q3_K_S.gguf | Q3_K_S | 0.02GB |
mistral-1L-tiny.IQ3_M.gguf | IQ3_M | 0.02GB |
mistral-1L-tiny.Q3_K.gguf | Q3_K | 0.02GB |
mistral-1L-tiny.Q3_K_M.gguf | Q3_K_M | 0.02GB |
mistral-1L-tiny.Q3_K_L.gguf | Q3_K_L | 0.02GB |
mistral-1L-tiny.IQ4_XS.gguf | IQ4_XS | 0.02GB |
mistral-1L-tiny.Q4_0.gguf | Q4_0 | 0.02GB |
mistral-1L-tiny.IQ4_NL.gguf | IQ4_NL | 0.02GB |
mistral-1L-tiny.Q4_K_S.gguf | Q4_K_S | 0.02GB |
mistral-1L-tiny.Q4_K.gguf | Q4_K | 0.02GB |
mistral-1L-tiny.Q4_K_M.gguf | Q4_K_M | 0.02GB |
mistral-1L-tiny.Q4_1.gguf | Q4_1 | 0.02GB |
mistral-1L-tiny.Q5_0.gguf | Q5_0 | 0.03GB |
mistral-1L-tiny.Q5_K_S.gguf | Q5_K_S | 0.03GB |
mistral-1L-tiny.Q5_K.gguf | Q5_K | 0.03GB |
mistral-1L-tiny.Q5_K_M.gguf | Q5_K_M | 0.03GB |
mistral-1L-tiny.Q5_1.gguf | Q5_1 | 0.03GB |
mistral-1L-tiny.Q6_K.gguf | Q6_K | 0.03GB |
mistral-1L-tiny.Q8_0.gguf | Q8_0 | 0.04GB |
Original model description:
tags: - generated_from_trainer datasets: - roneneldan/TinyStories metrics: - accuracy model-index: - name: mistral-1L-tiny results: - task: name: Causal Language Modeling type: text-generation dataset: name: roneneldan/TinyStories type: roneneldan/TinyStories metrics: - name: Accuracy type: accuracy value: 0.5792084706530948
mistral-1L-tiny
A tiny single-layer 35.1M parameter Mistral model, with a hidden size of 512, and an MLP intermediate size of 1024. This model is trained on the roneneldan/TinyStories dataset. It achieves the following results on the evaluation set:
- Loss: 1.6868
- Accuracy: 0.5792
Model description
This work is inspired by the 21M parameter one-layer GPT-Neo of the Tiny Stories paper. Results reproduced to acquire high-frequency checkpoints for further analysis.
Intended uses & limitations
Analysis of feature dynamics and emergence in real-world language models.
Training procedure
Trained for 90171 steps, corresponding to ~2 hours on a single H100.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3.0
Training results
Quite consistent English text generation.
Framework versions
- Transformers 4.38.1
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
- Downloads last month
- 162
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.