YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

RoLlama2-7b-Chat - GGUF

Original model description:

license: cc-by-nc-4.0 language: - ro base_model: - OpenLLM-Ro/RoLlama2-7b-Base new_version: OpenLLM-Ro/RoLlama2-7b-Instruct model-index: - name: OpenLLM-Ro/RoLlama2-7b-Chat results: - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: RoARC metrics: - name: Average type: accuracy value: 41.92 - name: 0-shot type: accuracy value: 39.59 - name: 1-shot type: accuracy value: 41.05 - name: 3-shot type: accuracy value: 42.42 - name: 5-shot type: accuracy value: 42.16 - name: 10-shot type: accuracy value: 43.36 - name: 25-shot type: accuracy value: 42.93

Model Card for Model ID

RoLlama2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the chat 7B model. Links to other models can be found at the bottom of this page.

Model Details

Model Description

OpenLLM represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.

  • Developed by: OpenLLM-Ro
  • Language(s): Romanian
  • License: cc-by-nc-4.0
  • Finetuned from model: RoLlama2-7b-Base

Model Sources

Intended Use

Intended Use Cases

RoLlama2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.

Out-of-Scope Use

Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.

How to Get Started with the Model

Use the code below to get started with the model.

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Chat")
model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama2-7b-Chat")

instruction = "Care este cel mai înalt vârf muntos din România?"
chat = [
        {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."},
        {"role": "user", "content": instruction},
        ]
prompt = tokenizer.apply_chat_template(chat, tokenize=False)

inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs, max_new_tokens=128)
print(tokenizer.decode(outputs[0]))

Benchmarks

Model Average ARC MMLU Winogrande HellaSwag GSM8k TruthfulQA
Llama-2-7b-chat 36.84 37.03 33.81 55.87 45.36 4.90 44.09
RoLlama2-7b-Instruct 45.71 43.66 39.70 70.34 57.36 18.78 44.44
RoLlama2-7b-Chat 43.82 41.92 37.29 66.68 57.91 13.47 45.65

Romanian MT-Bench

Model Average 1st turn 2nd turn Answers in Ro
Llama-2-7b-chat 1.08 1.44 0.73 45 / 160
RoLlama2-7b-Instruct 3.86 4.68 3.04 160 / 160
RoLlama2-7b-Chat TBC TBC TBC TBC

RoCulturaBench

Model Score Answers in Ro
Llama-2-7b-chat 1.21 33 / 100
RoLlama2-7b-Instruct 3.77 160 / 160
RoLlama2-7b-Chat TBC TBC

RoLlama2 Model Family

Model Link
RoLlama2-7b-Base link
RoLlama2-7b-Instruct link
RoLlama2-7b-Chat link

Citation

@misc{masala2024openllmrotechnicalreport,
      title={OpenLLM-Ro -- Technical Report on Open-source Romanian LLMs}, 
      author={Mihai Masala and Denis C. Ilie-Ablachim and Dragos Corlatescu and Miruna Zavelca and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
      year={2024},
      eprint={2405.07703},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2405.07703}, 
}
Downloads last month
79
GGUF
Model size
6.74B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.