YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
MiniChat-3B - GGUF
- Model creator: https://huggingface.co/GeneZC/
- Original model: https://huggingface.co/GeneZC/MiniChat-3B/
Name | Quant method | Size |
---|---|---|
MiniChat-3B.Q2_K.gguf | Q2_K | 1.09GB |
MiniChat-3B.IQ3_XS.gguf | IQ3_XS | 1.21GB |
MiniChat-3B.IQ3_S.gguf | IQ3_S | 1.27GB |
MiniChat-3B.Q3_K_S.gguf | Q3_K_S | 1.27GB |
MiniChat-3B.IQ3_M.gguf | IQ3_M | 1.33GB |
MiniChat-3B.Q3_K.gguf | Q3_K | 1.4GB |
MiniChat-3B.Q3_K_M.gguf | Q3_K_M | 1.4GB |
MiniChat-3B.Q3_K_L.gguf | Q3_K_L | 1.52GB |
MiniChat-3B.IQ4_XS.gguf | IQ4_XS | 1.55GB |
MiniChat-3B.Q4_0.gguf | Q4_0 | 1.62GB |
MiniChat-3B.IQ4_NL.gguf | IQ4_NL | 1.63GB |
MiniChat-3B.Q4_K_S.gguf | Q4_K_S | 1.63GB |
MiniChat-3B.Q4_K.gguf | Q4_K | 1.72GB |
MiniChat-3B.Q4_K_M.gguf | Q4_K_M | 1.72GB |
MiniChat-3B.Q4_1.gguf | Q4_1 | 1.79GB |
MiniChat-3B.Q5_0.gguf | Q5_0 | 1.95GB |
MiniChat-3B.Q5_K_S.gguf | Q5_K_S | 1.95GB |
MiniChat-3B.Q5_K.gguf | Q5_K | 2.01GB |
MiniChat-3B.Q5_K_M.gguf | Q5_K_M | 2.01GB |
MiniChat-3B.Q5_1.gguf | Q5_1 | 2.12GB |
MiniChat-3B.Q6_K.gguf | Q6_K | 2.31GB |
MiniChat-3B.Q8_0.gguf | Q8_0 | 2.99GB |
Original model description:
license: apache-2.0
language:
- en
- zh
library_name: transformers
widget:
- text: " [|User|] Hi 👋 [|Assistant|]"
MiniChat-3B
📑 arXiv | 👻 GitHub | 🤗 HuggingFace-MiniMA | 🤗 HuggingFace-MiniChat | 🤗 HuggingFace-MiniChat-1.5 | 🤖 ModelScope-MiniMA | 🤖 ModelScope-MiniChat
🆕 Updates: MiniChat-1.5-3B
❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.
A language model distilled and finetuned from an adapted version of LLaMA2-7B following "Towards the Law of Capacity Gap in Distilling Language Models".
Outperforming a wide range of 3B competitors in GPT4 evaluation and even competing with several 7B chat models.

The following is an example code snippet to use MiniChat-3B:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from conversation import get_default_conv_template
# MiniChat
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-3B", use_fast=False)
# GPU.
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
# CPU.
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float32).eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
conv = get_default_conv_template("minichat")
question = "Implement a program to find the common elements in two arrays without using any extra data structures."
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer([prompt]).input_ids
output_ids = model.generate(
torch.as_tensor(input_ids).to(device),
do_sample=True,
temperature=0.7,
max_new_tokens=1024,
)
output_ids = output_ids[0][len(input_ids[0]):]
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# output: "def common_elements(arr1, arr2):\n if len(arr1) == 0:\n return []\n if len(arr2) == 0:\n return arr1\n\n common_elements = []\n for element in arr1:\n if element in arr2:\n common_elements.append(element)\n\n return common_elements"
# Multiturn conversation could be realized by continuously appending questions to `conv`.
Bibtex
@article{zhang2023law,
title={Towards the Law of Capacity Gap in Distilling Language Models},
author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
year={2023},
url={https://arxiv.org/abs/2311.07052}
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 42.94 |
ARC (25-shot) | 44.03 |
HellaSwag (10-shot) | 67.19 |
MMLU (5-shot) | 39.17 |
TruthfulQA (0-shot) | 45.67 |
Winogrande (5-shot) | 65.27 |
GSM8K (5-shot) | 10.54 |
DROP (3-shot) | 28.73 |
- Downloads last month
- 28
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.