YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

ultrachat-phi-2-dpo-chatml - bnb 8bits

Original model description:

license: mit base_model: AlekseyKorshuk/ultrachat-phi-2-sft-chatml tags: - axolotl - dpo - trl - dpo - generated_from_trainer model-index: - name: ultrachat-phi-2-dpo-chatml results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: AlekseyKorshuk/ultrachat-phi-2-sft-chatml
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true

hub_model_id: AlekseyKorshuk/ultrachat-phi-2-dpo-chatml
hub_strategy: every_save

load_in_8bit: false
load_in_4bit: false
strict: false

rl: dpo
datasets:
  - path: argilla/ultrafeedback-binarized-preferences
    split: train
    type: chatml.argilla


dataset_prepared_path:
#val_set_size: 0.001
output_dir: ./output

sequence_len: 2048
#sample_packing: false  # currently unsupported
pad_to_sequence_len:

lora_r:
lora_alpha:
lora_dropout:
lora_target_modules:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: ui-thesis
wandb_entity:
wandb_watch:
wandb_name: ultrachat-phi-2-dpo-chatml
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 8
num_epochs: 3
optimizer: paged_adamw_8bit
adam_beta1: 0.9
adam_beta2: 0.95
max_grad_norm: 1.0
adam_epsilon: 0.00001
lr_scheduler: cosine
cosine_min_lr_ratio: 0.1
learning_rate: 5.0e-7
warmup_steps: 32
#warmup_ratio: 0.1
weight_decay: 0.01
dpo_beta: 0.01

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true


gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true


#evals_per_epoch: 5
#eval_table_size: 8 # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
#eval_table_max_new_tokens: 768 # Total number of tokens generated for predictions sent to wandb. Default is 128

chat_template: chatml
#saves_per_epoch: 1
save_steps: 500
save_total_limit: 1
seed: 42
debug:
deepspeed:


fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true

ultrachat-phi-2-dpo-chatml

This model is a fine-tuned version of AlekseyKorshuk/ultrachat-phi-2-sft-chatml on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 32
  • training_steps: 1492

Training results

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
2.78B params
Tensor type
F32
FP16
I8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.