metadata
language:
- ca
- hr
- da
- nl
- en
- fi
- fr
- de
- he
- hu
- is
- id
- it
- ja
- ko
- ms
- 'no'
- pl
- pt
- ro
- ru
- sr
- zh
- sk
- sl
- es
- sv
- th
- tr
- uk
- vi
base_model:
- google/gemma-3n-E4B-it
pipeline_tag: text-generation
tags:
- gemma
- gemma3
- gemma3n
- fp8
- quantized
- multimodal
- conversational
- text-generation-inference
- automatic-speech-recognition
- automatic-speech-translation
- audio-text-to-text
- video-text-to-text
license: gemma
license_name: gemma
name: RedHatAI/gemma-3n-E4B-it-FP8-dynamic
description: >-
This model was obtained by quantizing the weights and activations of
google/gemma-3n-E4B-it to FP8 data type.
readme: https://huggingface.co/RedHatAI/gemma-3n-E4B-it-FP8-dynamic/main/README.md
tasks:
- text-to-text
- image-to-text
- video-to-text
- audio-to-text
provider: Google
license_link: https://ai.google.dev/gemma/terms
validated_on:
- RHOAI 2.24
- RHAIIS 3.2.1
gemma-3n-E4B-it-FP8-Dynamic
Model Overview
- Model Architecture: gemma-3n-E4B-it
- Input: Audio-Vision-Text
- Output: Text
- Model Optimizations:
- Weight quantization: FP8
- Activation quantization: FP8
- Release Date: 08/01/2025
- Version: 1.0
- Validated on: RHOAI 2.24, RHAIIS 3.2.1
- Model Developers: RedHatAI
Quantized version of google/gemma-3n-E4B-it.
Model Optimizations
This model was obtained by quantizing the weights of google/gemma-3n-E4B-it to FP8 data type, ready for inference with vLLM >= 0.10.0
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams
# prepare model
llm = LLM(
model="RedHatAI/gemma-3n-E4B-it-FP8-Dynamic",
trust_remote_code=True,
max_model_len=4096,
max_num_seqs=2,
)
# prepare inputs
question = "What is the content of this image?"
inputs = {
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
"multi_modal_data": {
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
},
}
# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
Deploy on Red Hat AI Inference Server
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
--ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 8 \
--max-model-len 32768 \
--enforce-eager --model RedHatAI/gemma-3n-E4B-it-FP8-dynamic
Deploy on Red Hat Openshift AI
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
annotations:
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
labels:
opendatahub.io/dashboard: 'true'
spec:
annotations:
prometheus.io/port: '8080'
prometheus.io/path: '/metrics'
multiModel: false
supportedModelFormats:
- autoSelect: true
name: vLLM
containers:
- name: kserve-container
image: quay.io/modh/vllm:rhoai-2.24-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.24-rocm
command:
- python
- -m
- vllm.entrypoints.openai.api_server
args:
- "--port=8080"
- "--model=/mnt/models"
- "--served-model-name={{.Name}}"
env:
- name: HF_HOME
value: /tmp/hf_home
ports:
- containerPort: 8080
protocol: TCP
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
annotations:
openshift.io/display-name: gemma-3n-E4B-it-FP8-dynamic # OPTIONAL CHANGE
serving.kserve.io/deploymentMode: RawDeployment
name: gemma-3n-E4B-it-FP8-dynamic # specify model name. This value will be used to invoke the model in the payload
labels:
opendatahub.io/dashboard: 'true'
spec:
predictor:
maxReplicas: 1
minReplicas: 1
model:
modelFormat:
name: vLLM
name: ''
resources:
limits:
cpu: '2' # this is model specific
memory: 8Gi # this is model specific
nvidia.com/gpu: '1' # this is accelerator specific
requests: # same comment for this block
cpu: '1'
memory: 4Gi
nvidia.com/gpu: '1'
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
storageUri: oci://registry.redhat.io/rhelai1/modelcar-gemma-3n-e4b-it-fp8-dynamic:1.5
tolerations:
- effect: NoSchedule
key: nvidia.com/gpu
operator: Exists
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>
# apply both resources to run model
# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.
# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
-H "Content-Type: application/json" \
-d '{
"model": "gemma-3n-E4B-it-FP8-dynamic",
"stream": true,
"stream_options": {
"include_usage": true
},
"max_tokens": 1,
"messages": [
{
"role": "user",
"content": "How can a bee fly when its wings are so small?"
}
]
}'
See Red Hat Openshift AI documentation for more details.
Creation
This model was created with llm-compressor by running the code snippet below.
Model Creation Code
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from transformers import AutoProcessor, Gemma3nForConditionalGeneration
# Load model.
model_id = "google/gemma-3n-E4B-it"
model = Gemma3nForConditionalGeneration.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
# Recipe
recipe = [
QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
ignore=[
"re:.*embed_audio.*",
"re:.*embed_vision.*",
"re:.*audio_tower.*",
"re:.*vision_tower.*",
"re:.*altup.*",
"re:.*lm_head.*",
"re:.*laurel.*",
"re:model\.language_model\.layers\.\d+\.per_layer_input_gate",
"re:model\.language_model\.layers\.\d+\.per_layer_projection",
"model.language_model.per_layer_model_projection",
],
),
]
SAVE_DIR = f"{model_id.split('/')[1]}-{recipe[0].scheme}"
# Perform oneshot
oneshot(
model=model,
tokenizer=model_id,
recipe=recipe,
trust_remote_code_model=True,
tie_word_embeddings=True,
output_dir=SAVE_DIR,
)
# Save to disk compressed.
model.save_pretrained(SAVE_DIR, save_compressed=True)
processor.save_pretrained(SAVE_DIR)
Evaluation
The model was evaluated using lm_evaluation_harness for OpenLLM V1 and V2 text-based benchmarks. The evaluations were conducted using the following commands:
Evaluation Commands
OpenLLM V1
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=false,max_model_len=4096,gpu_memory_utilization=0.8,enable_chunked_prefill=True,enforce_eager=True,trust_remote_code=True \
--tasks openllm \
--batch_size auto \
--apply_chat_template \
--fewshot_as_multiturn
Leaderboard V2
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=false,max_model_len=15000,gpu_memory_utilization=0.5,enable_chunked_prefill=True,enforce_eager=True,trust_remote_code=True \
--tasks leaderboard \
--batch_size auto \
--apply_chat_template \
--fewshot_as_multiturn
Accuracy
| Category | Metric | google/gemma-3n-E4B-it | FP8 Dynamic | Recovery (%) |
|---|---|---|---|---|
| OpenLLM V1 | arc_challenge | 60.24 | 59.04 | 98.01% |
| gsm8k | 60.12 | 70.81 | 117.79% | |
| hellaswag | 74.94 | 73.28 | 97.79% | |
| mmlu | 64.14 | 64.82 | 101.06% | |
| truthfulqa_mc2 | 54.87 | 54.61 | 99.53% | |
| winogrande | 68.35 | 67.72 | 99.08% | |
| Average | 63.78 | 65.05 | 101.99% | |
| Leaderboard | bbh | 55.46 | 55.20 | 99.53% |
| mmlu_pro | 34.38 | 34.28 | 99.71% | |
| musr | 33.20 | 34.26 | 103.19% | |
| ifeval | 84.41 | 83.93 | 99.43% | |
| gpqa | 30.87 | 31.38 | 101.65% | |
| math_hard | 45.54 | 46.60 | 102.33% | |
| Average | 47.31 | 47.61 | 100.63% |