Qwen3-8B-FP8-block
Model Overview
- Model Architecture: Qwen3ForCausalLM
- Model Optimizations:
- Weight quantization: FP8
- Activation quantization: FP8
- Release Date:
- Version: 1.0
- Model Developers:: Red Hat
Quantized version of Qwen/Qwen3-8B.
Model Optimizations
This model was obtained by quantizing the weights and activations of Qwen/Qwen3-8B to FP8 data type.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.
Deployment
Use with vLLM
- Initialize vLLM server:
vllm serve nm-testing/Qwen3-8B-FP8-block --tensor_parallel_size 1
- Send requests to the server:
from openai import OpenAI
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model = "nm-testing/Qwen3-8B-FP8-block"
messages = [
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = client.chat.completions.create(
model=model,
messages=messages,
)
generated_text = outputs.choices[0].message.content
print(generated_text)
Creation
This model was quantized using the llm-compressor library as shown below.
Creation details
from transformers import AutoProcessor, Qwen3ForCausalLM
from llmcompressor import oneshot
from llmcompressor.modeling import replace_modules_for_calibration
from llmcompressor.modifiers.quantization import QuantizationModifier
MODEL_ID = "Qwen/Qwen3-8B"
model = Qwen3ForCausalLM.from_pretrained(MODEL_ID, dtype="auto")
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = replace_modules_for_calibration(model)
recipe = QuantizationModifier(
targets="Linear",
scheme="FP8_BLOCK",
ignore=["lm_head"],
)
oneshot(model=model, recipe=recipe)
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-block"
model.save_pretrained(SAVE_DIR)
processor.save_pretrained(SAVE_DIR)
Evaluation
The model was evaluated on the OpenLLM leaderboard task, using lm-evaluation-harness.
vLLM was used for all evaluations.
Evaluation details
Openllm V1
lm_eval \
--model vllm \
--model_args pretrained="nm-testing/Qwen3-8B-FP8-block",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=1,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--show_config
Openllm V2
lm_eval \
--model vllm \
--model_args pretrained="nm-testing/Qwen3-8B-FP8-block",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=1,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--apply_chat_template \
--fewshot_as_multiturn \
--write_out \
--batch_size auto \
--show_config
Coding Benchmarks
evalplus.evaluate --model "nm-testing/Qwen3-8B-FP8-block" \
--dataset "humaneval" \
--backend vllm \
--tp 1 \
--greedy
evalplus.evaluate --model "nm-testing/Qwen3-8B-FP8-block" \
--dataset "mbpp" \
--backend vllm \
--tp 1 \
--greedy
Accuracy
| Category |
Metric |
Qwen/Qwen3-8B |
nm-testing/Qwen3-8B-FP8-block |
Recovery (%) |
| OpenLLM V1 |
ARC-Challenge (Acc-Norm, 25-shot) |
67.66 |
67.92 |
100.38 |
| GSM8K (Strict-Match, 5-shot) |
87.95 |
87.79 |
99.83 |
| HellaSwag (Acc-Norm, 10-shot) |
76.78 |
76.60 |
99.77 |
| MMLU (Acc, 5-shot) |
74.88 |
74.70 |
99.75 |
| TruthfulQA (MC2, 0-shot) |
54.36 |
54.27 |
99.85 |
| Winogrande (Acc, 5-shot) |
71.11 |
71.43 |
100.44 |
| Average Score |
72.12 |
72.12 |
100.00 |
| OpenLLM V2 |
IFEval (Inst Level Strict Acc, 0-shot) |
48.56 |
48.80 |
100.49 |
| BBH (Acc-Norm, 3-shot) |
29.23 |
29.32 |
100.30 |
| Math-Hard (Exact-Match, 4-shot) |
17.82 |
18.05 |
101.27 |
| GPQA (Acc-Norm, 0-shot) |
25.76 |
26.09 |
101.30 |
| MUSR (Acc-Norm, 0-shot) |
41.01 |
41.14 |
100.32 |
| MMLU-Pro (Acc, 5-shot) |
11.32 |
11.33 |
100.07 |
| Average Score |
28.95 |
29.12 |
100.59 |
| Coding
|
HumanEval pass@1
|
84.80
|
85.40
|
100.71
|
| HumanEval+ pass@1
|
78.70
|
79.90
|
101.52
|
| MBPP pass@1
|
72.80
|
73.50
|
100.96
|
| MBPP+ pass@1
|
62.70
|
64.80
|
103.35
|