ppo-LunarLander-v2 / config.json
RayanRen's picture
Upload PPO LunarLander-v2 trained agent
507f209
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a2171f4a0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a2171f4a170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a2171f4a200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a2171f4a290>", "_build": "<function ActorCriticPolicy._build at 0x7a2171f4a320>", "forward": "<function ActorCriticPolicy.forward at 0x7a2171f4a3b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a2171f4a440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a2171f4a4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a2171f4a560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a2171f4a5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a2171f4a680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a2171f4a710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a2171f50ac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697399670216997376, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNe8j2njy0/CxOHvrH8ib6nKj09+kSmvQAAAAAAAAAAzacDvVK44rml0ZC2S7KasX9OfjtoDKY1AACAPwAAgD9mtiO99kxHukprQTj+PjczRk3QOQO+ZLcAAIA/AACAP80/wzyaCVU/eJS6vRaNkL6zjCG9Thq1vQAAAAAAAAAAs7sTvcNNWrziSRw83iiMPFxRuj21w2S9AACAPwAAgD/NPfa87D6cuxgupTyVJI08lV38PK1ncL0AAIA/AACAP5qrrDwp0HO6avECt690LLI7YUA6zaAXNgAAgD8AAIA/zRyGvPCkrD/NUZK+TvTkviAejTzA2EY9AAAAAAAAAAAN1Qa+TzYzP/PcG732OJC+8JzGvfjBEb0AAAAAAAAAAAAeQDznXsI+CH/TvqhoiL4w95K+oFIZvQAAAAAAAAAA+qQIPp9iVj8T+iu//JaEvjQWFb60dLy+AAAAAAAAAABmtHO8w3k3uuZXnrJ5uXowp320u6AbHTMAAIA/AACAP1O4MD4CPgk/w1nPvt6MVL4i/pm9HswnvgAAAAAAAAAAinebvmdJMj9Wq0M+epCfvv6Wpr2ReZK8AAAAAAAAAAAaBzc9NlwKvAcSlTxocYI81vNxPVB0Wr0AAIA/AACAP5rDQzxqO5k/MlHZPFP5vr5FdJU99tqIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGgi7btZ3eMAWyUTUABjAF0lEdAlvenUhFEzHV9lChoBkdAceJgdOqNqGgHTXMBaAhHQJb4BYnv2Gt1fZQoaAZHQHFBqkRBeHBoB01bAWgIR0CW+aALy+YddX2UKGgGR0Bxje/wiJO4aAdNRAFoCEdAlvmw0TDfnHV9lChoBkdAbt7/NJOFg2gHTUQBaAhHQJb6rQVsUIt1fZQoaAZHQHAh/SDyvs9oB01lAWgIR0CW+2jAi3XqdX2UKGgGR0BxPbbwjMV2aAdNBAFoCEdAlvwIrvsqrnV9lChoBkdAcfh6Tnq3VmgHTQYBaAhHQJb8vd43WFx1fZQoaAZHQHDlekcjqwBoB00eAWgIR0CW/aZtNzsAdX2UKGgGR0BxHel0o0AMaAdNMgFoCEdAlv6wIldC3XV9lChoBkdAcLDo86mwaGgHTWsBaAhHQJb/ZKraM751fZQoaAZHQG6UtmUW2w5oB00dAWgIR0CW/5XsgMc7dX2UKGgGR0BWKkmMOwxGaAdLx2gIR0CXAFCQcPvsdX2UKGgGR0Byfclu3trsaAdNHgFoCEdAlwD4NNJvpHV9lChoBkdAcgZGwzLwF2gHTU8BaAhHQJcCYGSpzcR1fZQoaAZHQHGw7mp2ll9oB01bAWgIR0CXApcdYGMXdX2UKGgGR0Bs9sWweNkwaAdNEAFoCEdAlwOU87p3YHV9lChoBkdAb/V2nKnvUmgHTTsBaAhHQJcEJXcQAdZ1fZQoaAZHQHOGBshxHXpoB00hAWgIR0CXBdGrCFbndX2UKGgGR0Byj8GZ/kNnaAdNMgFoCEdAlwaHH3lCC3V9lChoBkdAbiG065oXbmgHTR8BaAhHQJcHjVCojwB1fZQoaAZHQHKZAYUFjd5oB00SAWgIR0CXB6FsYVIqdX2UKGgGR0BwCcFr2xptaAdNFQFoCEdAlwkGsq8UVXV9lChoBkdAbn1hYvFm4GgHTWEBaAhHQJcJPkRzzVd1fZQoaAZHQHBRKQ3gk1NoB005AWgIR0CXCXkC3gDSdX2UKGgGR0Bw3OugYgq3aAdNGQFoCEdAlwqBwQ176nV9lChoBkdAcWpgKWszVWgHTSkBaAhHQJcMMzImw7l1fZQoaAZHQHIsR/ZuhsZoB01lAWgIR0CXDGg/TspodX2UKGgGR0BuO8Lc9GI9aAdNPwFoCEdAlwxrcCYCyXV9lChoBkdAcT1K5TZQHmgHTSABaAhHQJcNCKjzqbB1fZQoaAZHQGz4IHC4z8BoB00kAWgIR0CXDU/OdGy5dX2UKGgGR0BxD5AyEcsEaAdNDgFoCEdAlw1kK3NLUXV9lChoBkdAbvu/RE4NqmgHTR8BaAhHQJcOR4SpR411fZQoaAZHQHC9GRFI/aBoB02UAWgIR0CXDkbY9Pk8dX2UKGgGR0Bvi3/cWTHKaAdNFwFoCEdAlw8dNet0WHV9lChoBkdAcV8CUHIIW2gHTSQBaAhHQJcP8Lux8lZ1fZQoaAZHQHHzm/336ARoB00WAWgIR0CXEDVs1sLwdX2UKGgGR0ByHVvFWGRFaAdNIQFoCEdAlxB5NoJzDHV9lChoBkdAby8JoCdSVGgHTSEBaAhHQJcRl2eQMhJ1fZQoaAZHQGzOkVWS2YxoB00TAWgIR0CXEZ7GvOhTdX2UKGgGR0BS0GcvugHvaAdLzWgIR0CXEtkbPyCndX2UKGgGR0BuBFix3V0+aAdNVgFoCEdAlxN33lCCz3V9lChoBkdAbEMqyWzF/GgHTVABaAhHQJcUr0HyEtd1fZQoaAZHQHFg686FM7FoB00QAWgIR0CXFYD1oQFtdX2UKGgGR0ByHup71Iy1aAdNFQFoCEdAlxWXtF8XvnV9lChoBkdAbWtXg9/z8WgHTT0BaAhHQJcV+LpA2Q51fZQoaAZHQHL3dEgGKQ9oB01ZAWgIR0CXFrapxWDIdX2UKGgGR0Bwe8f3evZAaAdNGwFoCEdAlxbtY8uBc3V9lChoBkdAcStwx33Yc2gHTW4BaAhHQJcXjYxtYSx1fZQoaAZHQG5iKs+3YthoB005AWgIR0CXJ44PPLPldX2UKGgGR0Bw7xgiNbTuaAdNKAFoCEdAlyfpu2qkunV9lChoBkdAcqolN1yNoGgHTSEBaAhHQJcowYTCcgB1fZQoaAZHQHACQGr0aqFoB00bAWgIR0CXKN54GD+SdX2UKGgGR0BtGjDuSfUXaAdNRgFoCEdAlyl8Emplz3V9lChoBkdAbfKt2cJ+lWgHTT4BaAhHQJcrBdLQHA11fZQoaAZHQG68yxRl6JJoB01HAWgIR0CXK0M+eOGTdX2UKGgGR0Bx78J9iMHbaAdNFQFoCEdAlyuLlmvnsHV9lChoBkdAcwHi6QNkOWgHTQoBaAhHQJcsP7hvR7Z1fZQoaAZHQHKqTqB3A21oB01KAWgIR0CXLIV4oqkNdX2UKGgGR0BU8/YODrZ8aAdL1GgIR0CXLJm4y44IdX2UKGgGR0BwleOMl1KXaAdNMgFoCEdAly4gevIOpnV9lChoBkdAcOG9+gDifmgHTTEBaAhHQJcujCBPKuB1fZQoaAZHQHD6UMPSUkhoB00qAWgIR0CXLwejmCAddX2UKGgGR0BwQDkDIRywaAdNZAFoCEdAly/bIo3JgnV9lChoBkdAcEkKKpDNQmgHTTYBaAhHQJcwaNQ0oBt1fZQoaAZHQG8TBoM8YANoB00qAWgIR0CXMPeYlY2bdX2UKGgGR0BwVGmFajesaAdNQAFoCEdAlzFBo/Rmb3V9lChoBkdAcQctpVS4v2gHTREBaAhHQJcxXyVfNRp1fZQoaAZHQHDfIE0SAYpoB00tAWgIR0CXM2knTiKjdX2UKGgGR0BvCh1LamGeaAdNSAFoCEdAlzNo4dZJTXV9lChoBkdAUL8QRPGhmGgHS9toCEdAlzRv9DQZ43V9lChoBkdAbZwlGgBcRmgHTRUBaAhHQJc04L3K0Up1fZQoaAZHQG+b5ElVtGdoB00iAWgIR0CXNRVzIV/MdX2UKGgGR0BxyWWNWEK3aAdNCwFoCEdAlzYoEW69TXV9lChoBkdAcJZwMYuTR2gHTTIBaAhHQJc2WQ3gk1N1fZQoaAZHQG4vpDeCTU1oB00UAWgIR0CXOUbFS88LdX2UKGgGR0BvyQPmPo3aaAdNGwFoCEdAlzpXPNVzZHV9lChoBkdAbhtDMNc4YWgHTVQBaAhHQJc70l8gIQh1fZQoaAZHQHA2jmSyMUBoB00kAWgIR0CXPArELpiadX2UKGgGR0ByDEq8UVSGaAdNOwFoCEdAlz21O9FnZnV9lChoBkdAcSZzqrzXjGgHTb0BaAhHQJc9thOP/711fZQoaAZHQG1jbZnL7oBoB01MAWgIR0CXPzsLv1DjdX2UKGgGR0BxFuiSJTESaAdNYAFoCEdAl0CDPGACn3V9lChoBkdAcMf8Cgbp/2gHTQ8BaAhHQJdBFHXmNip1fZQoaAZHQHAjlW8yvcJoB01QAWgIR0CXQnNXYDkmdX2UKGgGR0ByZvfIjnmraAdNCgFoCEdAl0LR+KCQLnV9lChoBkdAbmJYq5LAYmgHTUABaAhHQJdC/Io3Jgd1fZQoaAZHQG+b7LEDQqtoB01sAWgIR0CXQ8fF72L6dX2UKGgGR0BwXt1DBuXNaAdNOAFoCEdAl0S3WWhRInV9lChoBkdAbvF40uUUwmgHTb8BaAhHQJdFECzTnaF1fZQoaAZHQG+BhuXNTtNoB01gAWgIR0CXRQt0mtyQdX2UKGgGR0Bvyxvm5lOHaAdNUgFoCEdAl0ibBO58SnV9lChoBkdAbcSTyrgfl2gHTTkBaAhHQJdI85T6zmh1fZQoaAZHQHFwMxO+IuZoB01JAWgIR0CXSVh7mdRSdX2UKGgGR0BwkSmaYu01aAdNJAFoCEdAl0l7nLaEjHV9lChoBkdAcNgx4IKMN2gHTSwBaAhHQJdJu09hZyN1fZQoaAZHQHDkax9oexRoB02NAWgIR0CXSdkUsWfsdX2UKGgGR0A6iiZOSGJvaAdL/2gIR0CXSg3cpLEldX2UKGgGR0BukiC8OCoTaAdNWQFoCEdAl0vrvCuU2XV9lChoBkdAcT2jzZpSJmgHTSYBaAhHQJdMnJiiItV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}