RayanRen commited on
Commit
507f209
·
1 Parent(s): 7c46890

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 166.14 +/- 45.77
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 253.29 +/- 15.82
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f36145aa940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36145aa9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36145aaa60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36145aaaf0>", "_build": "<function ActorCriticPolicy._build at 0x7f36145aab80>", "forward": "<function ActorCriticPolicy.forward at 0x7f36145aac10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36145aaca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f36145aad30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36145aadc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36145aae50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36145aaee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f36145a5600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672173810388025770, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADORiz2F09q5u0TtOYTPhLYpzQe6KqCEtQAAgD8AAIA/wLPGvcMpbLr+0Y25OwP3tGqokbqpOKU4AACAPwAAgD+aCZu9hbH3On3A8DzkEHc80SeSO7V30rwAAAAAAAAAALM5FL2VjvU+AgUWPu2MZL5FE5M9eAvpuwAAAAAAAAAAkMe9Pl/pzjxNGqE7UudhuVFIPzySKCW7AACAPwAAgD+asDg99sQCuhI2+7rmlJO4u7CQu2ZLFDoAAIA/AACAP1NPBD7so8U6S2/gOs9KkDcK8ns8+q4MugAAgD8AAIA/c3eVPYVzsLmTtNI6z77uNVFznLqudvW5AACAPwAAgD9aLgg+cVUmOlUVjzp89pY3Ufc3PF3wUrkAAIA/AACAP8rLYr77pNY7sBaxu92iKzn/k2y9mggVugAAgD8AAIA/mvHnPSmoF7ow9jg8ugrzvAgaarmA/dQ9AACAPwAAAADNANO8jz4Fuj6e1rtbD1U4HrbQOXcniDcAAIA/AACAP02KRT4KEzY6bTR2uOvz3bSwElc8oJKONwAAgD8AAIA/s2rMvXFNQbke+TI93T/BPDsFEzohh6Y9AACAPwAAgD+zajU9VHedPjjsYj6mBZ2+uHAFPlKTtz0AAAAAAAAAAE19K72Pul68ZTSkvHBbnTyOUMC9ff1+PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/kP67evoJcCUhpRSlIwBbJRL0owBdJRHQHpxCZWq95B1fZQoaAZoCWgPQwh65A8GHnRjQJSGlFKUaBVN6ANoFkdAen6Qfp2U0XV9lChoBmgJaA9DCHXniedskT3AlIaUUpRoFUvtaBZHQHrQn2M85jp1fZQoaAZoCWgPQwiBBMWPMYpgQJSGlFKUaBVN6ANoFkdAetoF2V3Ux3V9lChoBmgJaA9DCKBU+3Q8cVNAlIaUUpRoFU3oA2gWR0B639lar3j/dX2UKGgGaAloD0MIPZ0rSgkcWECUhpRSlGgVTegDaBZHQHsParBCUot1fZQoaAZoCWgPQwjohqbs9EcwwJSGlFKUaBVL/mgWR0B7FOya/h2odX2UKGgGaAloD0MIlgUTfxSRN0CUhpRSlGgVTQYBaBZHQHsoe8TSLIh1fZQoaAZoCWgPQwgS+MPPf0RcQJSGlFKUaBVN6ANoFkdAezJgUUO/cnV9lChoBmgJaA9DCEVlw5rK9lpAlIaUUpRoFU3oA2gWR0B7M2UyHmA9dX2UKGgGaAloD0MIUduGUZCiYUCUhpRSlGgVTegDaBZHQHs2r4vexfR1fZQoaAZoCWgPQwgTY5l+iXBXQJSGlFKUaBVN6ANoFkdAe0HLFn7HhnV9lChoBmgJaA9DCKGgFK3cs1xAlIaUUpRoFU3oA2gWR0B7U4X1rZandX2UKGgGaAloD0MISTDVzFqmMsCUhpRSlGgVTQcBaBZHQHtUu2RaHKx1fZQoaAZoCWgPQwj2J/G5kzFgQJSGlFKUaBVN6ANoFkdAe1Zu9eyAx3V9lChoBmgJaA9DCLIrLSP191hAlIaUUpRoFU3oA2gWR0B7dG9OARTTdX2UKGgGaAloD0MIChLb3QOUMkCUhpRSlGgVTSIBaBZHQHuGaRp1zQx1fZQoaAZoCWgPQwirQZjbvatfQJSGlFKUaBVN6ANoFkdAe5qddVvMr3V9lChoBmgJaA9DCI0N3ewPLl9AlIaUUpRoFU3oA2gWR0B7mzUmUnogdX2UKGgGaAloD0MInS/2Xnw0X0CUhpRSlGgVTegDaBZHQHuyMscyWRl1fZQoaAZoCWgPQwhG09nJ4OhgQJSGlFKUaBVN6ANoFkdAe8GM+NcW03V9lChoBmgJaA9DCADmWrSAdWNAlIaUUpRoFU3oA2gWR0B7zkTRIBikdX2UKGgGaAloD0MIui2RC872XUCUhpRSlGgVTegDaBZHQHwo7/GVAzJ1fZQoaAZoCWgPQwg9DRgkfeRFwJSGlFKUaBVNKwFoFkdAfDMnDziCKHV9lChoBmgJaA9DCBmPUglPADJAlIaUUpRoFU01AWgWR0B8TUVM23rldX2UKGgGaAloD0MIns+AejPOXECUhpRSlGgVTegDaBZHQHxhink1dgR1fZQoaAZoCWgPQwim8KDZdYc3QJSGlFKUaBVNDgFoFkdAfHAtga3qiXV9lChoBmgJaA9DCNlaXyS0KGBAlIaUUpRoFU3oA2gWR0B8dF+SbH6udX2UKGgGaAloD0MIVtehmpJkIsCUhpRSlGgVS/RoFkdAfHSk4m1IAnV9lChoBmgJaA9DCP7viApVbGJAlIaUUpRoFU3oA2gWR0B8fM63iJfqdX2UKGgGaAloD0MIE5z6QHL0YECUhpRSlGgVTegDaBZHQHx9u36Q/5d1fZQoaAZoCWgPQwj8qlyo/KRcQJSGlFKUaBVN6ANoFkdAfIDAxzq8lHV9lChoBmgJaA9DCBg/jXtzU2BAlIaUUpRoFU3oA2gWR0B8nJMTN+spdX2UKGgGaAloD0MI9buwNVuHVkCUhpRSlGgVTegDaBZHQHyd2foRqXZ1fZQoaAZoCWgPQwgOiBBXzqxZQJSGlFKUaBVN6ANoFkdAfJ+Eug6EJ3V9lChoBmgJaA9DCB+g+3JmSl5AlIaUUpRoFU3oA2gWR0B8vBOrQw9JdX2UKGgGaAloD0MIxanWwizARECUhpRSlGgVTRoBaBZHQHy88ry1/lR1fZQoaAZoCWgPQwgYIqev5+ZUQJSGlFKUaBVN6ANoFkdAfMyN70Fr23V9lChoBmgJaA9DCOGaO/pf6VtAlIaUUpRoFU3oA2gWR0B83jN7jT8YdX2UKGgGaAloD0MITrSrkPLT+b+UhpRSlGgVTRYBaBZHQH0CwPEsJ6Z1fZQoaAZoCWgPQwgH8BZIUFJhQJSGlFKUaBVN6ANoFkdAfQXTI/7iynV9lChoBmgJaA9DCKBrX0AvnVJAlIaUUpRoFU3oA2gWR0B9E8ka/ATJdX2UKGgGaAloD0MITKd1G9RDX0CUhpRSlGgVTegDaBZHQH2ajkIX0oV1fZQoaAZoCWgPQwg34zREFSYnQJSGlFKUaBVNNQFoFkdAfau3Kji4rnV9lChoBmgJaA9DCP4nf/eOn2VAlIaUUpRoFU3oA2gWR0B9sIMLF4s3dX2UKGgGaAloD0MITu0MU1t6Y0CUhpRSlGgVTegDaBZHQH2/jB/I8yN1fZQoaAZoCWgPQwiGyr+WV3hdQJSGlFKUaBVN6ANoFkdAfcPdgv114nV9lChoBmgJaA9DCLxdL02RS2JAlIaUUpRoFU3oA2gWR0B9xCJKraM8dX2UKGgGaAloD0MIcmw9QziDYECUhpRSlGgVTegDaBZHQH3LtRiw0O51fZQoaAZoCWgPQwgO9iaG5ERbQJSGlFKUaBVN6ANoFkdAfc+OB19v0nV9lChoBmgJaA9DCNOh0/Pu+GBAlIaUUpRoFU3oA2gWR0B969O32EkCdX2UKGgGaAloD0MI9nzNclkvYECUhpRSlGgVTegDaBZHQH3tFOO801t1fZQoaAZoCWgPQwhS76mcdoNhQJSGlFKUaBVN6ANoFkdAfe7lf7aZhXV9lChoBmgJaA9DCNAJoYMugQfAlIaUUpRoFUveaBZHQH329NFjNIN1fZQoaAZoCWgPQwhlVu9wO/5FwJSGlFKUaBVNAgFoFkdAfftlu3trsXV9lChoBmgJaA9DCH6QZcHECzDAlIaUUpRoFU0oAWgWR0B+B5axHG0edX2UKGgGaAloD0MIkgiNYGM9YkCUhpRSlGgVTegDaBZHQH4MEsSTQmh1fZQoaAZoCWgPQwhl/zwNGINfQJSGlFKUaBVN6ANoFkdAfh0lQdjoZHV9lChoBmgJaA9DCBVSflLtdzlAlIaUUpRoFU0PAWgWR0B+Ko/1QIlddX2UKGgGaAloD0MIV5V9VwTjX0CUhpRSlGgVTegDaBZHQH4u1v/BFd91fZQoaAZoCWgPQwikqgmi7rMiQJSGlFKUaBVNIAFoFkdAfjuzk6tDD3V9lChoBmgJaA9DCBCWsaGbslxAlIaUUpRoFU3oA2gWR0B+VA73fyf+dX2UKGgGaAloD0MIjWK5pVXrYUCUhpRSlGgVTegDaBZHQH5nFfiPyTZ1fZQoaAZoCWgPQwjgDz//PQhZQJSGlFKUaBVN6ANoFkdAfvlwY+B6KXV9lChoBmgJaA9DCDiHa7WHM11AlIaUUpRoFU3oA2gWR0B/DkWcjJMhdX2UKGgGaAloD0MIliAjoMLIWkCUhpRSlGgVTegDaBZHQH8TiZ4Oc2B1fZQoaAZoCWgPQwjBHhMpzUYJwJSGlFKUaBVNEgFoFkdAfxOWcBltj3V9lChoBmgJaA9DCLStZp3xD2xAlIaUUpRoFU3NAWgWR0B/H3R3NcGDdX2UKGgGaAloD0MIpnud1JcvWkCUhpRSlGgVTegDaBZHQH8yFwcYIjZ1fZQoaAZoCWgPQwh3SDFAooNcQJSGlFKUaBVN6ANoFkdAfzbaB7NSqHV9lChoBmgJaA9DCPg404RtrGFAlIaUUpRoFU3oA2gWR0B/WmerdWQwdX2UKGgGaAloD0MIRL5LqUs2YUCUhpRSlGgVTegDaBZHQH9clRUFSsN1fZQoaAZoCWgPQwhxy0dS0hJcQJSGlFKUaBVN6ANoFkdAf2yopQUHp3V9lChoBmgJaA9DCDRJLCl381hAlIaUUpRoFU3oA2gWR0B/e6thd+ocdX2UKGgGaAloD0MIVydnKO69WECUhpRSlGgVTegDaBZHQH+A4hIOH311fZQoaAZoCWgPQwhCI9i4/u5bQJSGlFKUaBVN6ANoFkdAf5Nr7fpD/nV9lChoBmgJaA9DCLMngc05q2FAlIaUUpRoFU3oA2gWR0B/of/tIClrdX2UKGgGaAloD0MIB7Ezhc74VECUhpRSlGgVTegDaBZHQH+meyVv/BF1fZQoaAZoCWgPQwjRzJNrCjQgQJSGlFKUaBVNGwFoFkdAf6aEaVD8cnV9lChoBmgJaA9DCBoZ5C7CEF9AlIaUUpRoFU3oA2gWR0B/yQ9xIatLdX2UKGgGaAloD0MIj95wH7kRVECUhpRSlGgVTegDaBZHQIAxvscABDJ1fZQoaAZoCWgPQwiWQbXBie1aQJSGlFKUaBVN6ANoFkdAgDqecQRPGnV9lChoBmgJaA9DCGNeRxyyQ0hAlIaUUpRoFU3oA2gWR0CAPNEP1+RYdX2UKGgGaAloD0MIAtTUsrUqVUCUhpRSlGgVTegDaBZHQIA81cbBGhF1fZQoaAZoCWgPQwht5Lop5ZZhQJSGlFKUaBVN6ANoFkdAgEGCGWUr1HV9lChoBmgJaA9DCAgB+RIqLFlAlIaUUpRoFU3oA2gWR0CASI/QBxPwdX2UKGgGaAloD0MIlUT2QZbrYUCUhpRSlGgVTegDaBZHQIBKaf8Muvl1fZQoaAZoCWgPQwj2m4npQl5eQJSGlFKUaBVN6ANoFkdAgFp2pZOi4HV9lChoBmgJaA9DCJ1mgXaH1C3AlIaUUpRoFU1NAWgWR0CAW08A7xNJdX2UKGgGaAloD0MIXfsCeuFRWECUhpRSlGgVTegDaBZHQIBhhSk0rLB1fZQoaAZoCWgPQwihavRqgBYywJSGlFKUaBVNSgFoFkdAgGIA+Y+jd3V9lChoBmgJaA9DCM3IIHcRbFRAlIaUUpRoFU3oA2gWR0CAZ73L3bmEdX2UKGgGaAloD0MIB3sTQ3J5VkCUhpRSlGgVTegDaBZHQIBp95GBnSR1fZQoaAZoCWgPQwiBlUOLbI8oQJSGlFKUaBVNLwFoFkdAgG41pj+aSnV9lChoBmgJaA9DCMhgxalWF2JAlIaUUpRoFU3oA2gWR0CAcmfwI+nqdX2UKGgGaAloD0MIbTzYYreDWkCUhpRSlGgVTegDaBZHQIB5Zh2GIsR1fZQoaAZoCWgPQwg1Y9F0dnlYQJSGlFKUaBVN6ANoFkdAgHuAXEZR9HV9lChoBmgJaA9DCLgFS3WBLWNAlIaUUpRoFU3oA2gWR0CAe4YXwb2ldX2UKGgGaAloD0MI/irAdxufZkCUhpRSlGgVTSoCaBZHQICK/N3W4Ex1fZQoaAZoCWgPQwhjQWFQpitWQJSGlFKUaBVN6ANoFkdAgIxQ9JSR83VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a2171f4a0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a2171f4a170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a2171f4a200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a2171f4a290>", "_build": "<function ActorCriticPolicy._build at 0x7a2171f4a320>", "forward": "<function ActorCriticPolicy.forward at 0x7a2171f4a3b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a2171f4a440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a2171f4a4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a2171f4a560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a2171f4a5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a2171f4a680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a2171f4a710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a2171f50ac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697399670216997376, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNe8j2njy0/CxOHvrH8ib6nKj09+kSmvQAAAAAAAAAAzacDvVK44rml0ZC2S7KasX9OfjtoDKY1AACAPwAAgD9mtiO99kxHukprQTj+PjczRk3QOQO+ZLcAAIA/AACAP80/wzyaCVU/eJS6vRaNkL6zjCG9Thq1vQAAAAAAAAAAs7sTvcNNWrziSRw83iiMPFxRuj21w2S9AACAPwAAgD/NPfa87D6cuxgupTyVJI08lV38PK1ncL0AAIA/AACAP5qrrDwp0HO6avECt690LLI7YUA6zaAXNgAAgD8AAIA/zRyGvPCkrD/NUZK+TvTkviAejTzA2EY9AAAAAAAAAAAN1Qa+TzYzP/PcG732OJC+8JzGvfjBEb0AAAAAAAAAAAAeQDznXsI+CH/TvqhoiL4w95K+oFIZvQAAAAAAAAAA+qQIPp9iVj8T+iu//JaEvjQWFb60dLy+AAAAAAAAAABmtHO8w3k3uuZXnrJ5uXowp320u6AbHTMAAIA/AACAP1O4MD4CPgk/w1nPvt6MVL4i/pm9HswnvgAAAAAAAAAAinebvmdJMj9Wq0M+epCfvv6Wpr2ReZK8AAAAAAAAAAAaBzc9NlwKvAcSlTxocYI81vNxPVB0Wr0AAIA/AACAP5rDQzxqO5k/MlHZPFP5vr5FdJU99tqIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGgi7btZ3eMAWyUTUABjAF0lEdAlvenUhFEzHV9lChoBkdAceJgdOqNqGgHTXMBaAhHQJb4BYnv2Gt1fZQoaAZHQHFBqkRBeHBoB01bAWgIR0CW+aALy+YddX2UKGgGR0Bxje/wiJO4aAdNRAFoCEdAlvmw0TDfnHV9lChoBkdAbt7/NJOFg2gHTUQBaAhHQJb6rQVsUIt1fZQoaAZHQHAh/SDyvs9oB01lAWgIR0CW+2jAi3XqdX2UKGgGR0BxPbbwjMV2aAdNBAFoCEdAlvwIrvsqrnV9lChoBkdAcfh6Tnq3VmgHTQYBaAhHQJb8vd43WFx1fZQoaAZHQHDlekcjqwBoB00eAWgIR0CW/aZtNzsAdX2UKGgGR0BxHel0o0AMaAdNMgFoCEdAlv6wIldC3XV9lChoBkdAcLDo86mwaGgHTWsBaAhHQJb/ZKraM751fZQoaAZHQG6UtmUW2w5oB00dAWgIR0CW/5XsgMc7dX2UKGgGR0BWKkmMOwxGaAdLx2gIR0CXAFCQcPvsdX2UKGgGR0Byfclu3trsaAdNHgFoCEdAlwD4NNJvpHV9lChoBkdAcgZGwzLwF2gHTU8BaAhHQJcCYGSpzcR1fZQoaAZHQHGw7mp2ll9oB01bAWgIR0CXApcdYGMXdX2UKGgGR0Bs9sWweNkwaAdNEAFoCEdAlwOU87p3YHV9lChoBkdAb/V2nKnvUmgHTTsBaAhHQJcEJXcQAdZ1fZQoaAZHQHOGBshxHXpoB00hAWgIR0CXBdGrCFbndX2UKGgGR0Byj8GZ/kNnaAdNMgFoCEdAlwaHH3lCC3V9lChoBkdAbiG065oXbmgHTR8BaAhHQJcHjVCojwB1fZQoaAZHQHKZAYUFjd5oB00SAWgIR0CXB6FsYVIqdX2UKGgGR0BwCcFr2xptaAdNFQFoCEdAlwkGsq8UVXV9lChoBkdAbn1hYvFm4GgHTWEBaAhHQJcJPkRzzVd1fZQoaAZHQHBRKQ3gk1NoB005AWgIR0CXCXkC3gDSdX2UKGgGR0Bw3OugYgq3aAdNGQFoCEdAlwqBwQ176nV9lChoBkdAcWpgKWszVWgHTSkBaAhHQJcMMzImw7l1fZQoaAZHQHIsR/ZuhsZoB01lAWgIR0CXDGg/TspodX2UKGgGR0BuO8Lc9GI9aAdNPwFoCEdAlwxrcCYCyXV9lChoBkdAcT1K5TZQHmgHTSABaAhHQJcNCKjzqbB1fZQoaAZHQGz4IHC4z8BoB00kAWgIR0CXDU/OdGy5dX2UKGgGR0BxD5AyEcsEaAdNDgFoCEdAlw1kK3NLUXV9lChoBkdAbvu/RE4NqmgHTR8BaAhHQJcOR4SpR411fZQoaAZHQHC9GRFI/aBoB02UAWgIR0CXDkbY9Pk8dX2UKGgGR0Bvi3/cWTHKaAdNFwFoCEdAlw8dNet0WHV9lChoBkdAcV8CUHIIW2gHTSQBaAhHQJcP8Lux8lZ1fZQoaAZHQHHzm/336ARoB00WAWgIR0CXEDVs1sLwdX2UKGgGR0ByHVvFWGRFaAdNIQFoCEdAlxB5NoJzDHV9lChoBkdAby8JoCdSVGgHTSEBaAhHQJcRl2eQMhJ1fZQoaAZHQGzOkVWS2YxoB00TAWgIR0CXEZ7GvOhTdX2UKGgGR0BS0GcvugHvaAdLzWgIR0CXEtkbPyCndX2UKGgGR0BuBFix3V0+aAdNVgFoCEdAlxN33lCCz3V9lChoBkdAbEMqyWzF/GgHTVABaAhHQJcUr0HyEtd1fZQoaAZHQHFg686FM7FoB00QAWgIR0CXFYD1oQFtdX2UKGgGR0ByHup71Iy1aAdNFQFoCEdAlxWXtF8XvnV9lChoBkdAbWtXg9/z8WgHTT0BaAhHQJcV+LpA2Q51fZQoaAZHQHL3dEgGKQ9oB01ZAWgIR0CXFrapxWDIdX2UKGgGR0Bwe8f3evZAaAdNGwFoCEdAlxbtY8uBc3V9lChoBkdAcStwx33Yc2gHTW4BaAhHQJcXjYxtYSx1fZQoaAZHQG5iKs+3YthoB005AWgIR0CXJ44PPLPldX2UKGgGR0Bw7xgiNbTuaAdNKAFoCEdAlyfpu2qkunV9lChoBkdAcqolN1yNoGgHTSEBaAhHQJcowYTCcgB1fZQoaAZHQHACQGr0aqFoB00bAWgIR0CXKN54GD+SdX2UKGgGR0BtGjDuSfUXaAdNRgFoCEdAlyl8Emplz3V9lChoBkdAbfKt2cJ+lWgHTT4BaAhHQJcrBdLQHA11fZQoaAZHQG68yxRl6JJoB01HAWgIR0CXK0M+eOGTdX2UKGgGR0Bx78J9iMHbaAdNFQFoCEdAlyuLlmvnsHV9lChoBkdAcwHi6QNkOWgHTQoBaAhHQJcsP7hvR7Z1fZQoaAZHQHKqTqB3A21oB01KAWgIR0CXLIV4oqkNdX2UKGgGR0BU8/YODrZ8aAdL1GgIR0CXLJm4y44IdX2UKGgGR0BwleOMl1KXaAdNMgFoCEdAly4gevIOpnV9lChoBkdAcOG9+gDifmgHTTEBaAhHQJcujCBPKuB1fZQoaAZHQHD6UMPSUkhoB00qAWgIR0CXLwejmCAddX2UKGgGR0BwQDkDIRywaAdNZAFoCEdAly/bIo3JgnV9lChoBkdAcEkKKpDNQmgHTTYBaAhHQJcwaNQ0oBt1fZQoaAZHQG8TBoM8YANoB00qAWgIR0CXMPeYlY2bdX2UKGgGR0BwVGmFajesaAdNQAFoCEdAlzFBo/Rmb3V9lChoBkdAcQctpVS4v2gHTREBaAhHQJcxXyVfNRp1fZQoaAZHQHDfIE0SAYpoB00tAWgIR0CXM2knTiKjdX2UKGgGR0BvCh1LamGeaAdNSAFoCEdAlzNo4dZJTXV9lChoBkdAUL8QRPGhmGgHS9toCEdAlzRv9DQZ43V9lChoBkdAbZwlGgBcRmgHTRUBaAhHQJc04L3K0Up1fZQoaAZHQG+b5ElVtGdoB00iAWgIR0CXNRVzIV/MdX2UKGgGR0BxyWWNWEK3aAdNCwFoCEdAlzYoEW69TXV9lChoBkdAcJZwMYuTR2gHTTIBaAhHQJc2WQ3gk1N1fZQoaAZHQG4vpDeCTU1oB00UAWgIR0CXOUbFS88LdX2UKGgGR0BvyQPmPo3aaAdNGwFoCEdAlzpXPNVzZHV9lChoBkdAbhtDMNc4YWgHTVQBaAhHQJc70l8gIQh1fZQoaAZHQHA2jmSyMUBoB00kAWgIR0CXPArELpiadX2UKGgGR0ByDEq8UVSGaAdNOwFoCEdAlz21O9FnZnV9lChoBkdAcSZzqrzXjGgHTb0BaAhHQJc9thOP/711fZQoaAZHQG1jbZnL7oBoB01MAWgIR0CXPzsLv1DjdX2UKGgGR0BxFuiSJTESaAdNYAFoCEdAl0CDPGACn3V9lChoBkdAcMf8Cgbp/2gHTQ8BaAhHQJdBFHXmNip1fZQoaAZHQHAjlW8yvcJoB01QAWgIR0CXQnNXYDkmdX2UKGgGR0ByZvfIjnmraAdNCgFoCEdAl0LR+KCQLnV9lChoBkdAbmJYq5LAYmgHTUABaAhHQJdC/Io3Jgd1fZQoaAZHQG+b7LEDQqtoB01sAWgIR0CXQ8fF72L6dX2UKGgGR0BwXt1DBuXNaAdNOAFoCEdAl0S3WWhRInV9lChoBkdAbvF40uUUwmgHTb8BaAhHQJdFECzTnaF1fZQoaAZHQG+BhuXNTtNoB01gAWgIR0CXRQt0mtyQdX2UKGgGR0Bvyxvm5lOHaAdNUgFoCEdAl0ibBO58SnV9lChoBkdAbcSTyrgfl2gHTTkBaAhHQJdI85T6zmh1fZQoaAZHQHFwMxO+IuZoB01JAWgIR0CXSVh7mdRSdX2UKGgGR0BwkSmaYu01aAdNJAFoCEdAl0l7nLaEjHV9lChoBkdAcNgx4IKMN2gHTSwBaAhHQJdJu09hZyN1fZQoaAZHQHDkax9oexRoB02NAWgIR0CXSdkUsWfsdX2UKGgGR0A6iiZOSGJvaAdL/2gIR0CXSg3cpLEldX2UKGgGR0BukiC8OCoTaAdNWQFoCEdAl0vrvCuU2XV9lChoBkdAcT2jzZpSJmgHTSYBaAhHQJdMnJiiItV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9b527978f44e28bffc3fc8ae8727ce9767521c88fb18d02e39c02042bc1f269
3
+ size 146751
ppo-LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a2171f4a0e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a2171f4a170>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a2171f4a200>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a2171f4a290>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a2171f4a320>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a2171f4a3b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a2171f4a440>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a2171f4a4d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a2171f4a560>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a2171f4a5f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a2171f4a680>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a2171f4a710>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a2171f50ac0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1697399670216997376,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNe8j2njy0/CxOHvrH8ib6nKj09+kSmvQAAAAAAAAAAzacDvVK44rml0ZC2S7KasX9OfjtoDKY1AACAPwAAgD9mtiO99kxHukprQTj+PjczRk3QOQO+ZLcAAIA/AACAP80/wzyaCVU/eJS6vRaNkL6zjCG9Thq1vQAAAAAAAAAAs7sTvcNNWrziSRw83iiMPFxRuj21w2S9AACAPwAAgD/NPfa87D6cuxgupTyVJI08lV38PK1ncL0AAIA/AACAP5qrrDwp0HO6avECt690LLI7YUA6zaAXNgAAgD8AAIA/zRyGvPCkrD/NUZK+TvTkviAejTzA2EY9AAAAAAAAAAAN1Qa+TzYzP/PcG732OJC+8JzGvfjBEb0AAAAAAAAAAAAeQDznXsI+CH/TvqhoiL4w95K+oFIZvQAAAAAAAAAA+qQIPp9iVj8T+iu//JaEvjQWFb60dLy+AAAAAAAAAABmtHO8w3k3uuZXnrJ5uXowp320u6AbHTMAAIA/AACAP1O4MD4CPgk/w1nPvt6MVL4i/pm9HswnvgAAAAAAAAAAinebvmdJMj9Wq0M+epCfvv6Wpr2ReZK8AAAAAAAAAAAaBzc9NlwKvAcSlTxocYI81vNxPVB0Wr0AAIA/AACAP5rDQzxqO5k/MlHZPFP5vr5FdJU99tqIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGgi7btZ3eMAWyUTUABjAF0lEdAlvenUhFEzHV9lChoBkdAceJgdOqNqGgHTXMBaAhHQJb4BYnv2Gt1fZQoaAZHQHFBqkRBeHBoB01bAWgIR0CW+aALy+YddX2UKGgGR0Bxje/wiJO4aAdNRAFoCEdAlvmw0TDfnHV9lChoBkdAbt7/NJOFg2gHTUQBaAhHQJb6rQVsUIt1fZQoaAZHQHAh/SDyvs9oB01lAWgIR0CW+2jAi3XqdX2UKGgGR0BxPbbwjMV2aAdNBAFoCEdAlvwIrvsqrnV9lChoBkdAcfh6Tnq3VmgHTQYBaAhHQJb8vd43WFx1fZQoaAZHQHDlekcjqwBoB00eAWgIR0CW/aZtNzsAdX2UKGgGR0BxHel0o0AMaAdNMgFoCEdAlv6wIldC3XV9lChoBkdAcLDo86mwaGgHTWsBaAhHQJb/ZKraM751fZQoaAZHQG6UtmUW2w5oB00dAWgIR0CW/5XsgMc7dX2UKGgGR0BWKkmMOwxGaAdLx2gIR0CXAFCQcPvsdX2UKGgGR0Byfclu3trsaAdNHgFoCEdAlwD4NNJvpHV9lChoBkdAcgZGwzLwF2gHTU8BaAhHQJcCYGSpzcR1fZQoaAZHQHGw7mp2ll9oB01bAWgIR0CXApcdYGMXdX2UKGgGR0Bs9sWweNkwaAdNEAFoCEdAlwOU87p3YHV9lChoBkdAb/V2nKnvUmgHTTsBaAhHQJcEJXcQAdZ1fZQoaAZHQHOGBshxHXpoB00hAWgIR0CXBdGrCFbndX2UKGgGR0Byj8GZ/kNnaAdNMgFoCEdAlwaHH3lCC3V9lChoBkdAbiG065oXbmgHTR8BaAhHQJcHjVCojwB1fZQoaAZHQHKZAYUFjd5oB00SAWgIR0CXB6FsYVIqdX2UKGgGR0BwCcFr2xptaAdNFQFoCEdAlwkGsq8UVXV9lChoBkdAbn1hYvFm4GgHTWEBaAhHQJcJPkRzzVd1fZQoaAZHQHBRKQ3gk1NoB005AWgIR0CXCXkC3gDSdX2UKGgGR0Bw3OugYgq3aAdNGQFoCEdAlwqBwQ176nV9lChoBkdAcWpgKWszVWgHTSkBaAhHQJcMMzImw7l1fZQoaAZHQHIsR/ZuhsZoB01lAWgIR0CXDGg/TspodX2UKGgGR0BuO8Lc9GI9aAdNPwFoCEdAlwxrcCYCyXV9lChoBkdAcT1K5TZQHmgHTSABaAhHQJcNCKjzqbB1fZQoaAZHQGz4IHC4z8BoB00kAWgIR0CXDU/OdGy5dX2UKGgGR0BxD5AyEcsEaAdNDgFoCEdAlw1kK3NLUXV9lChoBkdAbvu/RE4NqmgHTR8BaAhHQJcOR4SpR411fZQoaAZHQHC9GRFI/aBoB02UAWgIR0CXDkbY9Pk8dX2UKGgGR0Bvi3/cWTHKaAdNFwFoCEdAlw8dNet0WHV9lChoBkdAcV8CUHIIW2gHTSQBaAhHQJcP8Lux8lZ1fZQoaAZHQHHzm/336ARoB00WAWgIR0CXEDVs1sLwdX2UKGgGR0ByHVvFWGRFaAdNIQFoCEdAlxB5NoJzDHV9lChoBkdAby8JoCdSVGgHTSEBaAhHQJcRl2eQMhJ1fZQoaAZHQGzOkVWS2YxoB00TAWgIR0CXEZ7GvOhTdX2UKGgGR0BS0GcvugHvaAdLzWgIR0CXEtkbPyCndX2UKGgGR0BuBFix3V0+aAdNVgFoCEdAlxN33lCCz3V9lChoBkdAbEMqyWzF/GgHTVABaAhHQJcUr0HyEtd1fZQoaAZHQHFg686FM7FoB00QAWgIR0CXFYD1oQFtdX2UKGgGR0ByHup71Iy1aAdNFQFoCEdAlxWXtF8XvnV9lChoBkdAbWtXg9/z8WgHTT0BaAhHQJcV+LpA2Q51fZQoaAZHQHL3dEgGKQ9oB01ZAWgIR0CXFrapxWDIdX2UKGgGR0Bwe8f3evZAaAdNGwFoCEdAlxbtY8uBc3V9lChoBkdAcStwx33Yc2gHTW4BaAhHQJcXjYxtYSx1fZQoaAZHQG5iKs+3YthoB005AWgIR0CXJ44PPLPldX2UKGgGR0Bw7xgiNbTuaAdNKAFoCEdAlyfpu2qkunV9lChoBkdAcqolN1yNoGgHTSEBaAhHQJcowYTCcgB1fZQoaAZHQHACQGr0aqFoB00bAWgIR0CXKN54GD+SdX2UKGgGR0BtGjDuSfUXaAdNRgFoCEdAlyl8Emplz3V9lChoBkdAbfKt2cJ+lWgHTT4BaAhHQJcrBdLQHA11fZQoaAZHQG68yxRl6JJoB01HAWgIR0CXK0M+eOGTdX2UKGgGR0Bx78J9iMHbaAdNFQFoCEdAlyuLlmvnsHV9lChoBkdAcwHi6QNkOWgHTQoBaAhHQJcsP7hvR7Z1fZQoaAZHQHKqTqB3A21oB01KAWgIR0CXLIV4oqkNdX2UKGgGR0BU8/YODrZ8aAdL1GgIR0CXLJm4y44IdX2UKGgGR0BwleOMl1KXaAdNMgFoCEdAly4gevIOpnV9lChoBkdAcOG9+gDifmgHTTEBaAhHQJcujCBPKuB1fZQoaAZHQHD6UMPSUkhoB00qAWgIR0CXLwejmCAddX2UKGgGR0BwQDkDIRywaAdNZAFoCEdAly/bIo3JgnV9lChoBkdAcEkKKpDNQmgHTTYBaAhHQJcwaNQ0oBt1fZQoaAZHQG8TBoM8YANoB00qAWgIR0CXMPeYlY2bdX2UKGgGR0BwVGmFajesaAdNQAFoCEdAlzFBo/Rmb3V9lChoBkdAcQctpVS4v2gHTREBaAhHQJcxXyVfNRp1fZQoaAZHQHDfIE0SAYpoB00tAWgIR0CXM2knTiKjdX2UKGgGR0BvCh1LamGeaAdNSAFoCEdAlzNo4dZJTXV9lChoBkdAUL8QRPGhmGgHS9toCEdAlzRv9DQZ43V9lChoBkdAbZwlGgBcRmgHTRUBaAhHQJc04L3K0Up1fZQoaAZHQG+b5ElVtGdoB00iAWgIR0CXNRVzIV/MdX2UKGgGR0BxyWWNWEK3aAdNCwFoCEdAlzYoEW69TXV9lChoBkdAcJZwMYuTR2gHTTIBaAhHQJc2WQ3gk1N1fZQoaAZHQG4vpDeCTU1oB00UAWgIR0CXOUbFS88LdX2UKGgGR0BvyQPmPo3aaAdNGwFoCEdAlzpXPNVzZHV9lChoBkdAbhtDMNc4YWgHTVQBaAhHQJc70l8gIQh1fZQoaAZHQHA2jmSyMUBoB00kAWgIR0CXPArELpiadX2UKGgGR0ByDEq8UVSGaAdNOwFoCEdAlz21O9FnZnV9lChoBkdAcSZzqrzXjGgHTb0BaAhHQJc9thOP/711fZQoaAZHQG1jbZnL7oBoB01MAWgIR0CXPzsLv1DjdX2UKGgGR0BxFuiSJTESaAdNYAFoCEdAl0CDPGACn3V9lChoBkdAcMf8Cgbp/2gHTQ8BaAhHQJdBFHXmNip1fZQoaAZHQHAjlW8yvcJoB01QAWgIR0CXQnNXYDkmdX2UKGgGR0ByZvfIjnmraAdNCgFoCEdAl0LR+KCQLnV9lChoBkdAbmJYq5LAYmgHTUABaAhHQJdC/Io3Jgd1fZQoaAZHQG+b7LEDQqtoB01sAWgIR0CXQ8fF72L6dX2UKGgGR0BwXt1DBuXNaAdNOAFoCEdAl0S3WWhRInV9lChoBkdAbvF40uUUwmgHTb8BaAhHQJdFECzTnaF1fZQoaAZHQG+BhuXNTtNoB01gAWgIR0CXRQt0mtyQdX2UKGgGR0Bvyxvm5lOHaAdNUgFoCEdAl0ibBO58SnV9lChoBkdAbcSTyrgfl2gHTTkBaAhHQJdI85T6zmh1fZQoaAZHQHFwMxO+IuZoB01JAWgIR0CXSVh7mdRSdX2UKGgGR0BwkSmaYu01aAdNJAFoCEdAl0l7nLaEjHV9lChoBkdAcNgx4IKMN2gHTSwBaAhHQJdJu09hZyN1fZQoaAZHQHDkax9oexRoB02NAWgIR0CXSdkUsWfsdX2UKGgGR0A6iiZOSGJvaAdL/2gIR0CXSg3cpLEldX2UKGgGR0BukiC8OCoTaAdNWQFoCEdAl0vrvCuU2XV9lChoBkdAcT2jzZpSJmgHTSYBaAhHQJdMnJiiItV1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 276,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:494e95501a346ebc2e909134bbce84141c1a338b7abee89ca3267a3fbeef34d2
3
+ size 87929
ppo-LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2d3ac22232d1c678554060eed84f9af67de676759640f7947ec534010b6fee6
3
+ size 43329
ppo-LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 166.1447185583593, "std_reward": 45.770376682327, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-27T21:02:43.684581"}
 
1
+ {"mean_reward": 253.28699994829782, "std_reward": 15.822851460253116, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-15T20:35:57.700873"}