Rateddany's picture
End of training
f669e5b verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-300m-fr-1h
    results: []

wav2vec2-xls-r-300m-fr-1h

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5292
  • Wer: 0.3512
  • Cer: 0.1108

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.0018 11.3636 500 2.9956 1.0 1.0
2.879 22.7273 1000 2.9314 0.9958 0.9427
1.2342 34.0909 1500 0.8271 0.6077 0.1944
0.8487 45.4545 2000 0.5908 0.4622 0.1393
0.7073 56.8182 2500 0.5337 0.4119 0.1257
0.5277 68.1818 3000 0.5089 0.3837 0.1171
0.4473 79.5455 3500 0.5158 0.3666 0.1120
0.4438 90.9091 4000 0.5199 0.3610 0.1122
0.4289 102.2727 4500 0.5246 0.3496 0.1106
0.4218 113.6364 5000 0.5292 0.3512 0.1108

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1