whisper-finetuned-nan-tw-v3-torbo
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2539
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1911 | 1.0616 | 500 | 0.2122 |
0.1615 | 2.1233 | 1000 | 0.2177 |
0.1291 | 3.1849 | 1500 | 0.2198 |
0.1014 | 4.2465 | 2000 | 0.2262 |
0.0852 | 5.3082 | 2500 | 0.2331 |
0.077 | 6.3698 | 3000 | 0.2422 |
0.07 | 7.4315 | 3500 | 0.2472 |
0.0647 | 8.4931 | 4000 | 0.2496 |
0.06 | 9.5547 | 4500 | 0.2539 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Rangers/whisper-finetuned-nan-tw-v3-torbo
Base model
openai/whisper-large-v3
Finetuned
openai/whisper-large-v3-turbo