Rafakil's picture
layoutlmv3-finetuned-cord_100
acd9be1 verified
metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - cord-layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cord_100
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cord-layoutlmv3
          type: cord-layoutlmv3
          config: cord
          split: test
          args: cord
        metrics:
          - name: Precision
            type: precision
            value: 0.9501488095238095
          - name: Recall
            type: recall
            value: 0.9558383233532934
          - name: F1
            type: f1
            value: 0.9529850746268657
          - name: Accuracy
            type: accuracy
            value: 0.9639219015280136

layoutlmv3-finetuned-cord_100

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2004
  • Precision: 0.9501
  • Recall: 0.9558
  • F1: 0.9530
  • Accuracy: 0.9639

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.5625 250 1.1111 0.6740 0.7552 0.7123 0.7695
1.4577 3.125 500 0.5810 0.8362 0.8675 0.8516 0.8697
1.4577 4.6875 750 0.3787 0.8903 0.9109 0.9005 0.9219
0.4114 6.25 1000 0.2920 0.9167 0.9311 0.9239 0.9406
0.4114 7.8125 1250 0.2640 0.9161 0.9311 0.9235 0.9380
0.2215 9.375 1500 0.2366 0.9297 0.9409 0.9353 0.9474
0.2215 10.9375 1750 0.2232 0.9407 0.9491 0.9449 0.9571
0.1486 12.5 2000 0.2083 0.9450 0.9513 0.9482 0.9601
0.1486 14.0625 2250 0.1981 0.9480 0.9551 0.9515 0.9639
0.1129 15.625 2500 0.2004 0.9501 0.9558 0.9530 0.9639

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0