PianoBART / model.py
RS2002's picture
Upload 2 files
e715770 verified
import math
import numpy as np
import random
import torch
import torch.nn as nn
from transformers import BartModel
import torch.nn.functional as F
from huggingface_hub import PyTorchModelHubMixin
import pickle
from transformers import BartConfig
class Embeddings(nn.Module):
def __init__(self, n_token, d_model):
super().__init__()
self.lut = nn.Embedding(n_token, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
class PianoBart(nn.Module):
def __init__(self, bartConfig, e2w, w2e):
super().__init__()
self.bart = BartModel(bartConfig)
self.hidden_size = bartConfig.d_model
self.bartConfig = bartConfig
# token types: 0 Measure(第几个Bar(小节)), 1 Position(Bar中的位置), 2 Program(乐器), 3 Pitch(音高), 4 Duration(持续时间), 5 Velocity(力度), 6 TimeSig(拍号), 7 Tempo(速度)
self.n_tokens = [] # 每个属性的种类数
self.classes = ['Bar', 'Position', 'Instrument', 'Pitch', 'Duration', 'Velocity', 'TimeSig', 'Tempo']
for key in self.classes:
self.n_tokens.append(len(e2w[key]))
self.emb_sizes = [256] * 8
self.e2w = e2w
self.w2e = w2e
# for deciding whether the current input_ids is a <PAD> token
self.bar_pad_word = self.e2w['Bar']['Bar <PAD>']
self.mask_word_np = np.array([self.e2w[etype]['%s <MASK>' % etype] for etype in self.classes], dtype=np.int64)
self.pad_word_np = np.array([self.e2w[etype]['%s <PAD>' % etype] for etype in self.classes], dtype=np.int64)
self.sos_word_np = np.array([self.e2w[etype]['%s <SOS>' % etype] for etype in self.classes], dtype=np.int64)
self.eos_word_np = np.array([self.e2w[etype]['%s <EOS>' % etype] for etype in self.classes], dtype=np.int64)
# word_emb: embeddings to change token ids into embeddings
self.word_emb = []
for i, key in enumerate(self.classes): # 将每个特征都Embedding到256维,Embedding参数是可学习的
self.word_emb.append(Embeddings(self.n_tokens[i], self.emb_sizes[i]))
self.word_emb = nn.ModuleList(self.word_emb)
# linear layer to merge embeddings from different token types
self.encoder_linear = nn.Linear(np.sum(self.emb_sizes), bartConfig.d_model)
self.decoder_linear = self.encoder_linear
self.decoder_emb=None
#self.decoder_linear= nn.Linear(np.sum(self.emb_sizes), bartConfig.d_model)
def forward(self, input_ids_encoder, input_ids_decoder=None, encoder_attention_mask=None, decoder_attention_mask=None, output_hidden_states=True, generate=False):
encoder_embs = []
decoder_embs = []
for i, key in enumerate(self.classes):
encoder_embs.append(self.word_emb[i](input_ids_encoder[..., i]))
if self.decoder_emb is None and input_ids_decoder is not None:
decoder_embs.append(self.word_emb[i](input_ids_decoder[..., i]))
if self.decoder_emb is not None and input_ids_decoder is not None:
decoder_embs.append(self.decoder_emb(input_ids_decoder))
encoder_embs = torch.cat([*encoder_embs], dim=-1)
emb_linear_encoder = self.encoder_linear(encoder_embs)
if input_ids_decoder is not None:
decoder_embs = torch.cat([*decoder_embs], dim=-1)
emb_linear_decoder = self.decoder_linear(decoder_embs)
# feed to bart
if input_ids_decoder is not None:
y = self.bart(inputs_embeds=emb_linear_encoder, decoder_inputs_embeds=emb_linear_decoder, attention_mask=encoder_attention_mask, decoder_attention_mask=decoder_attention_mask, output_hidden_states=output_hidden_states) #attention_mask用于屏蔽<PAD> (PAD作用是在结尾补齐长度)
else:
y=self.bart.encoder(inputs_embeds=emb_linear_encoder,attention_mask=encoder_attention_mask)
return y
def get_rand_tok(self):
rand=[0]*8
for i in range(8):
rand[i]=random.choice(range(self.n_tokens[i]))
return np.array(rand)
def change_decoder_embedding(self,new_embedding,new_linear=None):
self.decoder_emb=new_embedding
if new_linear is not None:
self.decoder_linear=new_linear
class PianoBartLM(nn.Module):
def __init__(self, pianobart: PianoBart):
super().__init__()
self.pianobart = pianobart
self.mask_lm = MLM(self.pianobart.e2w, self.pianobart.n_tokens, self.pianobart.hidden_size)
def forward(self,input_ids_encoder, input_ids_decoder=None, encoder_attention_mask=None, decoder_attention_mask=None,generate=False,device_num=-1):
if not generate:
x = self.pianobart(input_ids_encoder, input_ids_decoder, encoder_attention_mask, decoder_attention_mask)
return self.mask_lm(x)
else:
if input_ids_encoder.shape[0] !=1:
print("ERROR")
exit(-1)
if device_num==-1:
device=torch.device('cpu')
else:
device=torch.device('cuda:'+str(device_num))
pad=torch.from_numpy(self.pianobart.pad_word_np)
input_ids_decoder=pad.repeat(input_ids_encoder.shape[0],input_ids_encoder.shape[1],1).to(device)
result=pad.repeat(input_ids_encoder.shape[0],input_ids_encoder.shape[1],1).to(device)
decoder_attention_mask=torch.zeros_like(encoder_attention_mask).to(device)
input_ids_decoder[:,0,:] = torch.tensor(self.pianobart.sos_word_np)
decoder_attention_mask[:,0] = 1
for i in range(input_ids_encoder.shape[1]):
# pbar = tqdm.tqdm(range(input_ids_encoder.shape[1]), disable=False)
# for i in pbar:
x = self.mask_lm(self.pianobart(input_ids_encoder, input_ids_decoder, encoder_attention_mask, decoder_attention_mask))
# outputs = []
# for j, etype in enumerate(self.pianobart.e2w):
# output = np.argmax(x[j].cpu().detach().numpy(), axis=-1)
# outputs.append(output)
# outputs = np.stack(outputs, axis=-1)
# outputs = torch.from_numpy(outputs)
# outputs=self.sample(x)
# if i!=input_ids_encoder.shape[1]-1:
# input_ids_decoder[:,i+1,:]=outputs[:,i,:]
# decoder_attention_mask[:,i+1]+=1
# result[:,i,:]=outputs[:,i,:]
current_output=self.sample(x,i)
# print(current_output)
if i!=input_ids_encoder.shape[1]-1:
input_ids_decoder[:,i+1,:]=current_output
decoder_attention_mask[:,i+1]+=1
# 为提升速度,提前终止生成
if (current_output>=pad).any():
break
result[:,i,:]=current_output
return result
def sample(self,x,index): # Adaptive Sampling Policy in CP Transformer
# token types: 0 Measure(第几个Bar(小节)), 1 Position(Bar中的位置), 2 Program(乐器), 3 Pitch(音高), 4 Duration(持续时间), 5 Velocity(力度), 6 TimeSig(拍号), 7 Tempo(速度)
t=[1.2,1.2,5,1,2,5,5,1.2]
p=[1,1,1,0.9,0.9,1,1,0.9]
result=[]
for j, etype in enumerate(self.pianobart.e2w):
y=x[j]
y=y[:,index,:]
y=sampling(y,p[j],t[j])
result.append(y)
return torch.tensor(result)
# -- nucleus -- #
def nucleus(probs, p):
probs /= (sum(probs) + 1e-5)
sorted_probs = np.sort(probs)[::-1]
sorted_index = np.argsort(probs)[::-1]
cusum_sorted_probs = np.cumsum(sorted_probs)
after_threshold = cusum_sorted_probs > p
if sum(after_threshold) > 0:
last_index = np.where(after_threshold)[0][0] + 1
candi_index = sorted_index[:last_index]
else:
candi_index = sorted_index[0:1]
candi_probs = [probs[i] for i in candi_index]
candi_probs /= sum(candi_probs)
word = np.random.choice(candi_index, size=1, p=candi_probs)[0]
return word
def sampling(logit, p=None, t=1.0):
logit = logit.squeeze()
probs = torch.softmax(logit/t,dim=-1)
probs=probs.cpu().detach().numpy()
cur_word = nucleus(probs, p=p)
return cur_word
class MLM(nn.Module):
def __init__(self, e2w, n_tokens, hidden_size):
super().__init__()
self.proj = []
for i, etype in enumerate(e2w):
self.proj.append(nn.Linear(hidden_size, n_tokens[i]))
self.proj = nn.ModuleList(self.proj)
self.e2w = e2w
def forward(self, y):
y = y.last_hidden_state
ys = []
for i, etype in enumerate(self.e2w):
ys.append(self.proj[i](y))
return ys
class SelfAttention(nn.Module):
def __init__(self, input_dim, da, r):
'''
Args:
input_dim (int): batch, seq, input_dim
da (int): number of features in hidden layer from self-attn
r (int): number of aspects of self-attn
'''
super(SelfAttention, self).__init__()
self.ws1 = nn.Linear(input_dim, da, bias=False)
self.ws2 = nn.Linear(da, r, bias=False)
def forward(self, h):
attn_mat = F.softmax(self.ws2(torch.tanh(self.ws1(h))), dim=1)
attn_mat = attn_mat.permute(0,2,1)
return attn_mat
class SequenceClassification(nn.Module):
def __init__(self, pianobart, class_num, hs, da=128, r=4):
super().__init__()
self.pianobart = pianobart
self.attention = SelfAttention(hs, da, r)
self.classifier = nn.Sequential(
nn.Dropout(0.1),
nn.Linear(hs*r, 256),
nn.ReLU(),
nn.Linear(256, class_num)
)
def forward(self, input_ids_encoder, encoder_attention_mask=None):
# y_shift = torch.zeros_like(input_ids_encoder)
# y_shift[:, 1:, :] = input_ids_encoder[:, :-1, :]
# y_shift[:, 0, :] = torch.tensor(self.pianobart.sos_word_np)
# attn_shift = torch.zeros_like(encoder_attention_mask)
# attn_shift[:, 1:] = encoder_attention_mask[:, :-1]
# attn_shift[:, 0] = encoder_attention_mask[:, 0]
# x = self.pianobart(input_ids_encoder=input_ids_encoder,input_ids_decoder=y_shift,encoder_attention_mask=encoder_attention_mask,decoder_attention_mask=attn_shift)
x = self.pianobart(input_ids_encoder=input_ids_encoder,input_ids_decoder=input_ids_encoder,encoder_attention_mask=encoder_attention_mask,decoder_attention_mask=encoder_attention_mask)
x = x.last_hidden_state
attn_mat = self.attention(x)
m = torch.bmm(attn_mat, x)
flatten = m.view(m.size()[0], -1)
res = self.classifier(flatten)
return res
class TokenClassification(nn.Module):
def __init__(self, pianobart, class_num, hs):
super().__init__()
self.pianobart = pianobart
self.classifier = nn.Sequential(
nn.Dropout(0.1),
nn.Linear(hs, 256),
nn.ReLU(),
nn.Linear(256, class_num)
)
def forward(self, input_ids_encoder, input_ids_decoder, encoder_attention_mask=None, decoder_attention_mask=None):
x = self.pianobart(input_ids_encoder, input_ids_decoder, encoder_attention_mask, decoder_attention_mask)
x = x.last_hidden_state
res = self.classifier(x)
return res
class PianoBART(
nn.Module,
PyTorchModelHubMixin
):
def __init__(self, max_position_embeddings=1024, hidden_size=1024, layers=8, heads=8, ffn_dims=2048):
super().__init__()
with open("./Octuple.pkl", 'rb') as f:
self.e2w, self.w2e = pickle.load(f)
self.config = BartConfig(max_position_embeddings=max_position_embeddings,
d_model=hidden_size,
encoder_layers=layers,
encoder_ffn_dim=ffn_dims,
encoder_attention_heads=heads,
decoder_layers=layers,
decoder_ffn_dim=ffn_dims,
decoder_attention_heads=heads
)
self.model = PianoBart(bartConfig=self.config, e2w=self.e2w, w2e=self.w2e)
def forward(self, input_ids_encoder, input_ids_decoder=None, encoder_attention_mask=None, decoder_attention_mask=None, output_hidden_states=True, generate=False):
return self.model(input_ids_encoder,input_ids_decoder,encoder_attention_mask,decoder_attention_mask,output_hidden_states,generate=False)