Upload 2 files
Browse files- Octuple.pkl +3 -0
- model.py +287 -0
Octuple.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8afdebe6a0040bb98b998050e43916d6739b137d4872a31faa78b534e82e008
|
3 |
+
size 43862
|
model.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers import BartModel
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from huggingface_hub import PyTorchModelHubMixin
|
9 |
+
import pickle
|
10 |
+
from transformers import BartConfig
|
11 |
+
|
12 |
+
|
13 |
+
class Embeddings(nn.Module):
|
14 |
+
def __init__(self, n_token, d_model):
|
15 |
+
super().__init__()
|
16 |
+
self.lut = nn.Embedding(n_token, d_model)
|
17 |
+
self.d_model = d_model
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
return self.lut(x) * math.sqrt(self.d_model)
|
21 |
+
|
22 |
+
|
23 |
+
class PianoBart(nn.Module):
|
24 |
+
def __init__(self, bartConfig, e2w, w2e):
|
25 |
+
super().__init__()
|
26 |
+
|
27 |
+
self.bart = BartModel(bartConfig)
|
28 |
+
self.hidden_size = bartConfig.d_model
|
29 |
+
self.bartConfig = bartConfig
|
30 |
+
|
31 |
+
# token types: 0 Measure(第几个Bar(小节)), 1 Position(Bar中的位置), 2 Program(乐器), 3 Pitch(音高), 4 Duration(持续时间), 5 Velocity(力度), 6 TimeSig(拍号), 7 Tempo(速度)
|
32 |
+
self.n_tokens = [] # 每个属性的种类数
|
33 |
+
self.classes = ['Bar', 'Position', 'Instrument', 'Pitch', 'Duration', 'Velocity', 'TimeSig', 'Tempo']
|
34 |
+
for key in self.classes:
|
35 |
+
self.n_tokens.append(len(e2w[key]))
|
36 |
+
self.emb_sizes = [256] * 8
|
37 |
+
self.e2w = e2w
|
38 |
+
self.w2e = w2e
|
39 |
+
|
40 |
+
# for deciding whether the current input_ids is a <PAD> token
|
41 |
+
self.bar_pad_word = self.e2w['Bar']['Bar <PAD>']
|
42 |
+
self.mask_word_np = np.array([self.e2w[etype]['%s <MASK>' % etype] for etype in self.classes], dtype=np.int64)
|
43 |
+
self.pad_word_np = np.array([self.e2w[etype]['%s <PAD>' % etype] for etype in self.classes], dtype=np.int64)
|
44 |
+
self.sos_word_np = np.array([self.e2w[etype]['%s <SOS>' % etype] for etype in self.classes], dtype=np.int64)
|
45 |
+
self.eos_word_np = np.array([self.e2w[etype]['%s <EOS>' % etype] for etype in self.classes], dtype=np.int64)
|
46 |
+
|
47 |
+
|
48 |
+
# word_emb: embeddings to change token ids into embeddings
|
49 |
+
self.word_emb = []
|
50 |
+
for i, key in enumerate(self.classes): # 将每个特征都Embedding到256维,Embedding参数是可学习的
|
51 |
+
self.word_emb.append(Embeddings(self.n_tokens[i], self.emb_sizes[i]))
|
52 |
+
self.word_emb = nn.ModuleList(self.word_emb)
|
53 |
+
|
54 |
+
# linear layer to merge embeddings from different token types
|
55 |
+
self.encoder_linear = nn.Linear(np.sum(self.emb_sizes), bartConfig.d_model)
|
56 |
+
self.decoder_linear = self.encoder_linear
|
57 |
+
self.decoder_emb=None
|
58 |
+
#self.decoder_linear= nn.Linear(np.sum(self.emb_sizes), bartConfig.d_model)
|
59 |
+
|
60 |
+
def forward(self, input_ids_encoder, input_ids_decoder=None, encoder_attention_mask=None, decoder_attention_mask=None, output_hidden_states=True, generate=False):
|
61 |
+
encoder_embs = []
|
62 |
+
decoder_embs = []
|
63 |
+
for i, key in enumerate(self.classes):
|
64 |
+
encoder_embs.append(self.word_emb[i](input_ids_encoder[..., i]))
|
65 |
+
if self.decoder_emb is None and input_ids_decoder is not None:
|
66 |
+
decoder_embs.append(self.word_emb[i](input_ids_decoder[..., i]))
|
67 |
+
if self.decoder_emb is not None and input_ids_decoder is not None:
|
68 |
+
decoder_embs.append(self.decoder_emb(input_ids_decoder))
|
69 |
+
encoder_embs = torch.cat([*encoder_embs], dim=-1)
|
70 |
+
emb_linear_encoder = self.encoder_linear(encoder_embs)
|
71 |
+
if input_ids_decoder is not None:
|
72 |
+
decoder_embs = torch.cat([*decoder_embs], dim=-1)
|
73 |
+
emb_linear_decoder = self.decoder_linear(decoder_embs)
|
74 |
+
# feed to bart
|
75 |
+
if input_ids_decoder is not None:
|
76 |
+
y = self.bart(inputs_embeds=emb_linear_encoder, decoder_inputs_embeds=emb_linear_decoder, attention_mask=encoder_attention_mask, decoder_attention_mask=decoder_attention_mask, output_hidden_states=output_hidden_states) #attention_mask用于屏蔽<PAD> (PAD作用是在结尾补齐长度)
|
77 |
+
else:
|
78 |
+
y=self.bart.encoder(inputs_embeds=emb_linear_encoder,attention_mask=encoder_attention_mask)
|
79 |
+
return y
|
80 |
+
|
81 |
+
def get_rand_tok(self):
|
82 |
+
rand=[0]*8
|
83 |
+
for i in range(8):
|
84 |
+
rand[i]=random.choice(range(self.n_tokens[i]))
|
85 |
+
return np.array(rand)
|
86 |
+
|
87 |
+
def change_decoder_embedding(self,new_embedding,new_linear=None):
|
88 |
+
self.decoder_emb=new_embedding
|
89 |
+
if new_linear is not None:
|
90 |
+
self.decoder_linear=new_linear
|
91 |
+
|
92 |
+
|
93 |
+
class PianoBartLM(nn.Module):
|
94 |
+
def __init__(self, pianobart: PianoBart):
|
95 |
+
super().__init__()
|
96 |
+
self.pianobart = pianobart
|
97 |
+
self.mask_lm = MLM(self.pianobart.e2w, self.pianobart.n_tokens, self.pianobart.hidden_size)
|
98 |
+
|
99 |
+
def forward(self,input_ids_encoder, input_ids_decoder=None, encoder_attention_mask=None, decoder_attention_mask=None,generate=False,device_num=-1):
|
100 |
+
if not generate:
|
101 |
+
x = self.pianobart(input_ids_encoder, input_ids_decoder, encoder_attention_mask, decoder_attention_mask)
|
102 |
+
return self.mask_lm(x)
|
103 |
+
else:
|
104 |
+
if input_ids_encoder.shape[0] !=1:
|
105 |
+
print("ERROR")
|
106 |
+
exit(-1)
|
107 |
+
if device_num==-1:
|
108 |
+
device=torch.device('cpu')
|
109 |
+
else:
|
110 |
+
device=torch.device('cuda:'+str(device_num))
|
111 |
+
pad=torch.from_numpy(self.pianobart.pad_word_np)
|
112 |
+
input_ids_decoder=pad.repeat(input_ids_encoder.shape[0],input_ids_encoder.shape[1],1).to(device)
|
113 |
+
result=pad.repeat(input_ids_encoder.shape[0],input_ids_encoder.shape[1],1).to(device)
|
114 |
+
decoder_attention_mask=torch.zeros_like(encoder_attention_mask).to(device)
|
115 |
+
input_ids_decoder[:,0,:] = torch.tensor(self.pianobart.sos_word_np)
|
116 |
+
decoder_attention_mask[:,0] = 1
|
117 |
+
for i in range(input_ids_encoder.shape[1]):
|
118 |
+
# pbar = tqdm.tqdm(range(input_ids_encoder.shape[1]), disable=False)
|
119 |
+
# for i in pbar:
|
120 |
+
x = self.mask_lm(self.pianobart(input_ids_encoder, input_ids_decoder, encoder_attention_mask, decoder_attention_mask))
|
121 |
+
# outputs = []
|
122 |
+
# for j, etype in enumerate(self.pianobart.e2w):
|
123 |
+
# output = np.argmax(x[j].cpu().detach().numpy(), axis=-1)
|
124 |
+
# outputs.append(output)
|
125 |
+
# outputs = np.stack(outputs, axis=-1)
|
126 |
+
# outputs = torch.from_numpy(outputs)
|
127 |
+
# outputs=self.sample(x)
|
128 |
+
# if i!=input_ids_encoder.shape[1]-1:
|
129 |
+
# input_ids_decoder[:,i+1,:]=outputs[:,i,:]
|
130 |
+
# decoder_attention_mask[:,i+1]+=1
|
131 |
+
# result[:,i,:]=outputs[:,i,:]
|
132 |
+
current_output=self.sample(x,i)
|
133 |
+
# print(current_output)
|
134 |
+
if i!=input_ids_encoder.shape[1]-1:
|
135 |
+
input_ids_decoder[:,i+1,:]=current_output
|
136 |
+
decoder_attention_mask[:,i+1]+=1
|
137 |
+
# 为提升速度,提前终止生成
|
138 |
+
if (current_output>=pad).any():
|
139 |
+
break
|
140 |
+
result[:,i,:]=current_output
|
141 |
+
return result
|
142 |
+
|
143 |
+
def sample(self,x,index): # Adaptive Sampling Policy in CP Transformer
|
144 |
+
# token types: 0 Measure(第几个Bar(小节)), 1 Position(Bar中的位置), 2 Program(乐器), 3 Pitch(音高), 4 Duration(持续时间), 5 Velocity(力度), 6 TimeSig(拍号), 7 Tempo(速度)
|
145 |
+
t=[1.2,1.2,5,1,2,5,5,1.2]
|
146 |
+
p=[1,1,1,0.9,0.9,1,1,0.9]
|
147 |
+
result=[]
|
148 |
+
for j, etype in enumerate(self.pianobart.e2w):
|
149 |
+
y=x[j]
|
150 |
+
y=y[:,index,:]
|
151 |
+
y=sampling(y,p[j],t[j])
|
152 |
+
result.append(y)
|
153 |
+
return torch.tensor(result)
|
154 |
+
|
155 |
+
|
156 |
+
# -- nucleus -- #
|
157 |
+
def nucleus(probs, p):
|
158 |
+
probs /= (sum(probs) + 1e-5)
|
159 |
+
sorted_probs = np.sort(probs)[::-1]
|
160 |
+
sorted_index = np.argsort(probs)[::-1]
|
161 |
+
cusum_sorted_probs = np.cumsum(sorted_probs)
|
162 |
+
after_threshold = cusum_sorted_probs > p
|
163 |
+
if sum(after_threshold) > 0:
|
164 |
+
last_index = np.where(after_threshold)[0][0] + 1
|
165 |
+
candi_index = sorted_index[:last_index]
|
166 |
+
else:
|
167 |
+
candi_index = sorted_index[0:1]
|
168 |
+
candi_probs = [probs[i] for i in candi_index]
|
169 |
+
candi_probs /= sum(candi_probs)
|
170 |
+
word = np.random.choice(candi_index, size=1, p=candi_probs)[0]
|
171 |
+
return word
|
172 |
+
|
173 |
+
|
174 |
+
def sampling(logit, p=None, t=1.0):
|
175 |
+
logit = logit.squeeze()
|
176 |
+
probs = torch.softmax(logit/t,dim=-1)
|
177 |
+
probs=probs.cpu().detach().numpy()
|
178 |
+
cur_word = nucleus(probs, p=p)
|
179 |
+
return cur_word
|
180 |
+
|
181 |
+
|
182 |
+
class MLM(nn.Module):
|
183 |
+
def __init__(self, e2w, n_tokens, hidden_size):
|
184 |
+
super().__init__()
|
185 |
+
self.proj = []
|
186 |
+
for i, etype in enumerate(e2w):
|
187 |
+
self.proj.append(nn.Linear(hidden_size, n_tokens[i]))
|
188 |
+
self.proj = nn.ModuleList(self.proj)
|
189 |
+
self.e2w = e2w
|
190 |
+
|
191 |
+
def forward(self, y):
|
192 |
+
y = y.last_hidden_state
|
193 |
+
ys = []
|
194 |
+
for i, etype in enumerate(self.e2w):
|
195 |
+
ys.append(self.proj[i](y))
|
196 |
+
return ys
|
197 |
+
|
198 |
+
|
199 |
+
class SelfAttention(nn.Module):
|
200 |
+
def __init__(self, input_dim, da, r):
|
201 |
+
'''
|
202 |
+
Args:
|
203 |
+
input_dim (int): batch, seq, input_dim
|
204 |
+
da (int): number of features in hidden layer from self-attn
|
205 |
+
r (int): number of aspects of self-attn
|
206 |
+
'''
|
207 |
+
super(SelfAttention, self).__init__()
|
208 |
+
self.ws1 = nn.Linear(input_dim, da, bias=False)
|
209 |
+
self.ws2 = nn.Linear(da, r, bias=False)
|
210 |
+
|
211 |
+
def forward(self, h):
|
212 |
+
attn_mat = F.softmax(self.ws2(torch.tanh(self.ws1(h))), dim=1)
|
213 |
+
attn_mat = attn_mat.permute(0,2,1)
|
214 |
+
return attn_mat
|
215 |
+
|
216 |
+
|
217 |
+
class SequenceClassification(nn.Module):
|
218 |
+
def __init__(self, pianobart, class_num, hs, da=128, r=4):
|
219 |
+
super().__init__()
|
220 |
+
self.pianobart = pianobart
|
221 |
+
self.attention = SelfAttention(hs, da, r)
|
222 |
+
self.classifier = nn.Sequential(
|
223 |
+
nn.Dropout(0.1),
|
224 |
+
nn.Linear(hs*r, 256),
|
225 |
+
nn.ReLU(),
|
226 |
+
nn.Linear(256, class_num)
|
227 |
+
)
|
228 |
+
|
229 |
+
def forward(self, input_ids_encoder, encoder_attention_mask=None):
|
230 |
+
# y_shift = torch.zeros_like(input_ids_encoder)
|
231 |
+
# y_shift[:, 1:, :] = input_ids_encoder[:, :-1, :]
|
232 |
+
# y_shift[:, 0, :] = torch.tensor(self.pianobart.sos_word_np)
|
233 |
+
# attn_shift = torch.zeros_like(encoder_attention_mask)
|
234 |
+
# attn_shift[:, 1:] = encoder_attention_mask[:, :-1]
|
235 |
+
# attn_shift[:, 0] = encoder_attention_mask[:, 0]
|
236 |
+
# x = self.pianobart(input_ids_encoder=input_ids_encoder,input_ids_decoder=y_shift,encoder_attention_mask=encoder_attention_mask,decoder_attention_mask=attn_shift)
|
237 |
+
|
238 |
+
x = self.pianobart(input_ids_encoder=input_ids_encoder,input_ids_decoder=input_ids_encoder,encoder_attention_mask=encoder_attention_mask,decoder_attention_mask=encoder_attention_mask)
|
239 |
+
|
240 |
+
x = x.last_hidden_state
|
241 |
+
attn_mat = self.attention(x)
|
242 |
+
m = torch.bmm(attn_mat, x)
|
243 |
+
flatten = m.view(m.size()[0], -1)
|
244 |
+
res = self.classifier(flatten)
|
245 |
+
return res
|
246 |
+
|
247 |
+
|
248 |
+
class TokenClassification(nn.Module):
|
249 |
+
def __init__(self, pianobart, class_num, hs):
|
250 |
+
super().__init__()
|
251 |
+
self.pianobart = pianobart
|
252 |
+
self.classifier = nn.Sequential(
|
253 |
+
nn.Dropout(0.1),
|
254 |
+
nn.Linear(hs, 256),
|
255 |
+
nn.ReLU(),
|
256 |
+
nn.Linear(256, class_num)
|
257 |
+
)
|
258 |
+
|
259 |
+
def forward(self, input_ids_encoder, input_ids_decoder, encoder_attention_mask=None, decoder_attention_mask=None):
|
260 |
+
x = self.pianobart(input_ids_encoder, input_ids_decoder, encoder_attention_mask, decoder_attention_mask)
|
261 |
+
x = x.last_hidden_state
|
262 |
+
res = self.classifier(x)
|
263 |
+
return res
|
264 |
+
|
265 |
+
|
266 |
+
class PianoBART(
|
267 |
+
nn.Module,
|
268 |
+
PyTorchModelHubMixin
|
269 |
+
):
|
270 |
+
def __init__(self, max_position_embeddings=1024, hidden_size=1024, layers=8, heads=8, ffn_dims=2048):
|
271 |
+
super().__init__()
|
272 |
+
with open("./Octuple.pkl", 'rb') as f:
|
273 |
+
self.e2w, self.w2e = pickle.load(f)
|
274 |
+
self.config = BartConfig(max_position_embeddings=max_position_embeddings,
|
275 |
+
d_model=hidden_size,
|
276 |
+
encoder_layers=layers,
|
277 |
+
encoder_ffn_dim=ffn_dims,
|
278 |
+
encoder_attention_heads=heads,
|
279 |
+
decoder_layers=layers,
|
280 |
+
decoder_ffn_dim=ffn_dims,
|
281 |
+
decoder_attention_heads=heads
|
282 |
+
)
|
283 |
+
self.model = PianoBart(bartConfig=self.config, e2w=self.e2w, w2e=self.w2e)
|
284 |
+
|
285 |
+
|
286 |
+
def forward(self, input_ids_encoder, input_ids_decoder=None, encoder_attention_mask=None, decoder_attention_mask=None, output_hidden_states=True, generate=False):
|
287 |
+
return self.model(input_ids_encoder,input_ids_decoder,encoder_attention_mask,decoder_attention_mask,output_hidden_states,generate=False)
|