|
--- |
|
license: llama3 |
|
datasets: |
|
- LooksJuicy/ruozhiba |
|
language: |
|
- zh |
|
--- |
|
|
|
## 基于ruozhiba对Llama-3-8B-Instruct进行微调。</br> |
|
### 模型:</br> |
|
- https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct |
|
|
|
### 数据集: |
|
- https://huggingface.co/datasets/LooksJuicy/ruozhiba |
|
|
|
### 训练工具 |
|
https://github.com/hiyouga/LLaMA-Factory |
|
|
|
### 测评方式: |
|
使用opencompass(https://github.com/open-compass/OpenCompass/ ), 测试工具基于CEval和MMLU对微调之后的模型和原始模型进行测试。</br> |
|
测试模型分别为: |
|
- Llama-3-8B |
|
- Llama-3-8B-Instruct |
|
- LLama3-Instruct-sft-ruozhiba,使用ruozhiba数据对Llama-3-8B-Instruct使用sft方式lora微调 |
|
|
|
### 结果 |
|
| 模型名称 | CEVAL | MMLU | |
|
|--------------------------|-------|------| |
|
| LLama3 | 49.91 | 66.62| |
|
| LLama3-Instruct | 50.55 | 67.15| |
|
| LLama3-Instruct-sft-ruozhiba-3epoch | 50.87 | 67.51| |
|
|
|
### Training hyperparameters |
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 20 |
|
- num_epochs: 3.0 |
|
- mixed_precision_training: Native AMP |
|
|