Uploaded model

  • Developed by: RAYU555
  • License: apache-2.0 cc-by-sa-4.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

出力方法

下記のコードを上から実行してください。

(使用ライブラリなどは適宜自身のpcにあったバージョンの物などをインストールしてから実行してください)

"""
本リポジトリのモデルを読み込んでから実行してください
"""

import json
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

# 学習したモデルを用いてタスクを実行
from tqdm import tqdm

results = []
for dt in tqdm(datasets):
  input = dt["input"]

  prompt = f"""### 指示\n{input}\n### 回答\n"""

  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

  outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Used ELYZA-tasks-100 for fineturning.

ELYZA-tasks-100: 日本語instructionモデル評価データセット © 2023 Akira Sasaki and Masato Hirakawa and Shintaro Horie and Tomoaki Nakamura (CC BY-SA 4.0 )

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for RAYU555/llm-jp-3-13b-it

Finetuned
(1120)
this model