|
--- |
|
base_model: unsloth/phi-4-unsloth-bnb-4bit |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
license: apache-2.0 |
|
language: |
|
- en |
|
datasets: |
|
- bespokelabs/Bespoke-Stratos-17k |
|
--- |
|
|
|
# Phi4 Turn R1Distill LoRA Adapters |
|
|
|
## Overview |
|
Hey! These LoRA adapters are trained using different reasoning datasets that utilize **Thought** and **Solution** for reasoning responses. |
|
I hope these help jumpstart your project! These adapters have been trained on an **A800 GPU** and should provide a solid base for fine-tuning or merging. |
|
|
|
Everything on my page is left **public** for Open Source use. |
|
|
|
## Available LoRA Adapters |
|
Here are the links to the available adapters as of **January 30, 2025**: |
|
|
|
- [Phi4.Turn.R1Distill-Lora1](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora1) |
|
- [Phi4.Turn.R1Distill-Lora2](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora2) |
|
- [Phi4.Turn.R1Distill-Lora3](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora3) |
|
- [Phi4.Turn.R1Distill-Lora4](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora4) |
|
- [Phi4.Turn.R1Distill-Lora5](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora5) |
|
- [Phi4.Turn.R1Distill-Lora6](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora6) |
|
- [Phi4.Turn.R1Distill-Lora7](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora7) |
|
- [Phi4.Turn.R1Distill-Lora8](https://huggingface.co/Quazim0t0/Phi4.Turn.R1Distill-Lora8) |
|
|
|
## Usage |
|
These adapters can be loaded and used with `peft` and `transformers`. Here’s a quick example: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel |
|
|
|
base_model = "microsoft/Phi-4" |
|
lora_adapter = "Quazim0t0/Phi4.Turn.R1Distill-Lora1" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model) |
|
model = AutoModelForCausalLM.from_pretrained(base_model) |
|
model = PeftModel.from_pretrained(model, lora_adapter) |
|
|
|
model.eval() |
|
|