|
|
|
--- |
|
|
|
library_name: transformers |
|
license: apache-2.0 |
|
tags: |
|
- autotrain |
|
- text-generation-inference |
|
- text-generation |
|
- peft |
|
- generated_from_trainer |
|
- mistral |
|
- transformers |
|
- Inference Endpoints |
|
- pytorch |
|
base_model: mistralai/Mistral-7B-Instruct-v0.2 |
|
model-index: |
|
- name: Mental-Health_ML |
|
results: [] |
|
datasets: |
|
- Amod/mental_health_counseling_conversations |
|
inference: true |
|
widget: |
|
- messages: |
|
- role: user |
|
content: What is your favorite condiment? |
|
|
|
--- |
|
|
|
[](https://hf.co/QuantFactory) |
|
|
|
|
|
# QuantFactory/Mental-Health-FineTuned-Mistral-7B-Instruct-v0.2-GGUF |
|
This is quantized version of [prabureddy/Mental-Health-FineTuned-Mistral-7B-Instruct-v0.2](https://huggingface.co/prabureddy/Mental-Health-FineTuned-Mistral-7B-Instruct-v0.2) created using llama.cpp |
|
|
|
# Original Model Card |
|
|
|
|
|
# Model Trained Using AutoTrain |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the [mental_health_counseling_conversations](https://huggingface.co/datasets/Amod/mental_health_counseling_conversations) dataset. |
|
|
|
# Usage |
|
|
|
```python |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_path = "prabureddy/Mental-Health-FineTuned-Mistral-7B-Instruct-v0.2" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
device_map="auto", |
|
torch_dtype='auto' |
|
).eval() |
|
|
|
# Prompt content: "hi" |
|
messages = [ |
|
{"role": "user", "content": "Hey Alex! I have been feeling a bit down lately.I could really use some advice on how to feel better?"} |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') |
|
output_ids = model.generate(input_ids.to('cuda')) |
|
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
# Model response: "Hello! How can I assist you today?" |
|
print(response) |
|
``` |
|
|