File size: 4,233 Bytes
383180b d5e56b1 6213802 cbfa777 4a5329b 3251ec3 d5e56b1 6213802 fa5cb43 6213802 d5e56b1 6213802 d5e56b1 3251ec3 d5e56b1 cbfa777 43120cf cbfa777 d5e56b1 3251ec3 d5e56b1 44b2307 d5e56b1 fa5cb43 44b2307 d5e56b1 cbfa777 44b2307 cbfa777 d5e56b1 cbfa777 d5e56b1 fa5cb43 d5e56b1 fa5cb43 cbfa777 d5e56b1 3251ec3 dfb6fcc 3251ec3 d5e56b1 6213802 4a5329b 6213802 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
license: apache-2.0
datasets:
- mozilla-foundation/common_voice_15_0
language:
- fr
metrics:
- wer
base_model:
- LeBenchmark/wav2vec2-FR-7K-large
pipeline_tag: automatic-speech-recognition
library_name: speechbrain
tags:
- Transformer
- wav2vec2
- CTC
- inference
---
# asr-wav2vec2-commonvoice-15-fr : LeBenchmark/wav2vec2-FR-7K-large fine-tuned on CommonVoice 15.0 French
<!-- Provide a quick summary of what the model is/does. -->
*asr-wav2vec2-commonvoice-15-fr* is an Automatic Speech Recognition model fine-tuned on CommonVoice 15.0 French set with *LeBenchmark/wav2vec2-FR-7K-large* as the pretrained wav2vec2 model.
The fine-tuned model achieves the following performance :
| Release | Valid WER | Test WER | GPUs | Epochs
|:-------------:|:--------------:|:--------------:| :--------:|:--------:|
| 2023-09-08 | 9.14 | 11.21 | 4xV100 32GB | 30 |
## 📝 Model Details
The ASR system is composed of:
- the **Tokenizer** (char) that transforms the input text into a sequence of characters ("cat" into ["c", "a", "t"]) and trained with the train transcriptions (train.tsv).
- the **Acoustic model** (wav2vec2.0 + DNN + CTC greedy decode). The pretrained wav2vec 2.0 model [LeBenchmark/wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large) is combined with two DNN layers and fine-tuned on CommonVoice FR.
The final acoustic representation is given to the CTC greedy decode.
We used recordings sampled at 16kHz (single channel).
## 💻 How to transcribe a file with the model
### Install and import speechbrain
```bash
pip install speechbrain
```
```python
from speechbrain.inference.ASR import EncoderASR
```
### Pipeline
```python
def transcribe(audio, model):
return model.transcribe_file(audio).lower()
def save_transcript(transcript, audio, output_file):
with open(output_file, 'w', encoding='utf-8') as file:
file.write(f"{audio}\t{transcript}\n")
def main():
model = EncoderASR.from_hparams("Propicto/asr-wav2vec2-commonvoice-15-fr", savedir="tmp/")
transcript = transcribe(audio, model)
save_transcript(transcript, audio, "out.txt")
```
## ⚙️ Training Details
### Training Data
We use the train / valid / test splits provided by CommonVoice, which corresponds to:
| | Train | Valid | Test |
|:-------------:|:-------------:|:--------------:|:--------------:|
| # utterances | 527,554 | 16,132 | 16,132 |
| # hours | 756.19 | 25.84 | 26.11 |
### Training Procedure
We follow the training procedure provided in the [ASR-CTC speechbrain recipe](https://github.com/speechbrain/speechbrain/tree/develop/recipes/CommonVoice/ASR/CTC).
The `common_voice_prepare.py` script handles the preprocessing of the dataset.
#### Training Hyperparameters
Refer to the hyperparams.yaml file to get the hyperparameters information.
#### Training time
With 4xV100 32GB, the training took ~ 81 hours.
#### Libraries
[Speechbrain](https://speechbrain.github.io/):
```bibtex
@misc{SB2021,
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
title = {SpeechBrain},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
}
```
## 💡 Information
- **Developed by:** Cécile Macaire
- **Funded by [optional]:** GENCI-IDRIS (Grant 2023-AD011013625R1)
PROPICTO ANR-20-CE93-0005
- **Language(s) (NLP):** French
- **License:** Apache-2.0
- **Finetuned from model:** LeBenchmark/wav2vec2-FR-7K-large
## 📌 Citation
```bibtex
@inproceedings{macaire24_interspeech,
title = {Towards Speech-to-Pictograms Translation},
author = {Cécile Macaire and Chloé Dion and Didier Schwab and Benjamin Lecouteux and Emmanuelle Esperança-Rodier},
year = {2024},
booktitle = {Interspeech 2024},
pages = {857--861},
doi = {10.21437/Interspeech.2024-490},
issn = {2958-1796},
}
``` |