Update README.md
Browse files
README.md
CHANGED
@@ -23,48 +23,42 @@ tags:
|
|
23 |
|
24 |
*asr-wav2vec2-commonvoice-15-fr* is an Automatic Speech Recognition model fine-tuned on CommonVoice 15.0 French set with *LeBenchmark/wav2vec2-FR-7K-large* as the pretrained wav2vec2 model.
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
<!-- Provide a longer summary of what this model is. -->
|
33 |
|
|
|
|
|
|
|
|
|
34 |
|
|
|
35 |
|
36 |
- **Developed by:** Cécile Macaire
|
37 |
- **Funded by [optional]:** GENCI-IDRIS (Grant 2023-AD011013625R1)
|
38 |
PROPICTO ANR-20-CE93-0005
|
39 |
- **Language(s) (NLP):** French
|
40 |
- **License:** Apache-2.0
|
41 |
-
- **Finetuned from model
|
42 |
-
|
43 |
-
### Model Sources [optional]
|
44 |
-
|
45 |
-
<!-- Provide the basic links for the model. -->
|
46 |
-
|
47 |
-
- **Repository:** https://github.com/macairececile/speech-to-pictograms.
|
48 |
-
- **Paper [optional]:**
|
49 |
|
50 |
|
51 |
## How to Get Started with the Model
|
52 |
|
53 |
-
Use the code below to get started with the model.
|
54 |
-
|
55 |
-
[More Information Needed]
|
56 |
-
|
57 |
## Training Details
|
58 |
|
|
|
59 |
### Training Data
|
60 |
|
61 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
62 |
|
63 |
-
[More Information Needed]
|
64 |
|
65 |
### Training Procedure
|
66 |
|
67 |
-
|
68 |
|
69 |
#### Preprocessing [optional]
|
70 |
|
@@ -105,12 +99,6 @@ Use the code below to get started with the model.
|
|
105 |
|
106 |
#### Summary
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
## Model Examination [optional]
|
111 |
-
|
112 |
-
<!-- Relevant interpretability work for the model goes here -->
|
113 |
-
|
114 |
[More Information Needed]
|
115 |
|
116 |
## Environmental Impact
|
@@ -143,12 +131,9 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
143 |
|
144 |
[More Information Needed]
|
145 |
|
146 |
-
## Citation
|
147 |
-
|
148 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
149 |
-
|
150 |
-
**BibTeX:**
|
151 |
|
|
|
152 |
@inproceedings{macaire24_interspeech,
|
153 |
title = {Towards Speech-to-Pictograms Translation},
|
154 |
author = {Cécile Macaire and Chloé Dion and Didier Schwab and Benjamin Lecouteux and Emmanuelle Esperança-Rodier},
|
@@ -157,4 +142,5 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
157 |
pages = {857--861},
|
158 |
doi = {10.21437/Interspeech.2024-490},
|
159 |
issn = {2958-1796},
|
160 |
-
}
|
|
|
|
23 |
|
24 |
*asr-wav2vec2-commonvoice-15-fr* is an Automatic Speech Recognition model fine-tuned on CommonVoice 15.0 French set with *LeBenchmark/wav2vec2-FR-7K-large* as the pretrained wav2vec2 model.
|
25 |
|
26 |
+
The fine-tuned model achieves the following performance :
|
27 |
+
|:-------------:|:--------------:|:--------------:| :--------:|
|
28 |
+
| Release | Valid WER | Test WER | GPUs |
|
29 |
+
|:-------------:|:--------------:|:--------------:| :--------:|
|
30 |
+
| 2023-09-08 | 9.14 | 11.21 | 4xV100 32GB |
|
31 |
+
|:-------------:|:--------------:|:--------------:| :--------:|
|
32 |
|
33 |
+
## Model Details
|
|
|
|
|
34 |
|
35 |
+
The ASR system is composed of:
|
36 |
+
- the **Tokenizer** (char) that transforms the input text into a sequence of characters ("cat" into ["c", "a", "t"]) and trained with the train transcriptions (train.tsv).
|
37 |
+
- the **Acoustic model** (wav2vec2.0 + DNN + CTC greedy decode). The pretrained wav2vec 2.0 model (LeBenchmark/wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large) is combined with two DNN layers and fine-tuned on CommonVoice FR.
|
38 |
+
The final acoustic representation is given to the CTC greedy decode.
|
39 |
|
40 |
+
We used recordings sampled at 16kHz (single channel).
|
41 |
|
42 |
- **Developed by:** Cécile Macaire
|
43 |
- **Funded by [optional]:** GENCI-IDRIS (Grant 2023-AD011013625R1)
|
44 |
PROPICTO ANR-20-CE93-0005
|
45 |
- **Language(s) (NLP):** French
|
46 |
- **License:** Apache-2.0
|
47 |
+
- **Finetuned from model:** LeBenchmark/wav2vec2-FR-7K-large
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
|
50 |
## How to Get Started with the Model
|
51 |
|
|
|
|
|
|
|
|
|
52 |
## Training Details
|
53 |
|
54 |
+
|
55 |
### Training Data
|
56 |
|
|
|
57 |
|
|
|
58 |
|
59 |
### Training Procedure
|
60 |
|
61 |
+
|
62 |
|
63 |
#### Preprocessing [optional]
|
64 |
|
|
|
99 |
|
100 |
#### Summary
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
[More Information Needed]
|
103 |
|
104 |
## Environmental Impact
|
|
|
131 |
|
132 |
[More Information Needed]
|
133 |
|
134 |
+
## Citation
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
```bibtex
|
137 |
@inproceedings{macaire24_interspeech,
|
138 |
title = {Towards Speech-to-Pictograms Translation},
|
139 |
author = {Cécile Macaire and Chloé Dion and Didier Schwab and Benjamin Lecouteux and Emmanuelle Esperança-Rodier},
|
|
|
142 |
pages = {857--861},
|
143 |
doi = {10.21437/Interspeech.2024-490},
|
144 |
issn = {2958-1796},
|
145 |
+
}
|
146 |
+
```
|