StarMix-7B-slerp
StarMix-7B-slerp is a merge of the following models using mergekit:
🧩 Configuration
slices:
- sources:
- model: berkeley-nest/Starling-LM-7B-alpha
layer_range: [0, 32]
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 67.41 |
AI2 Reasoning Challenge (25-Shot) | 65.36 |
HellaSwag (10-Shot) | 85.10 |
MMLU (5-Shot) | 62.57 |
TruthfulQA (0-shot) | 57.81 |
Winogrande (5-shot) | 79.95 |
GSM8k (5-shot) | 53.68 |
- Downloads last month
- 76
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Praneeth/StarMix-7B-slerp
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard65.360
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.100
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard62.570
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard57.810
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard79.950
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard53.680