|
--- |
|
language: el |
|
datasets: |
|
- common_voice |
|
- CSS10 |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: Greek XLSR Wav2Vec2 Large 53 - CV + CSS10 |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice el |
|
type: common_voice |
|
args: el |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 20.89 |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-greek |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on greek using the [Common Voice](https://huggingface.co/datasets/common_voice) and [CSS10](https://github.com/Kyubyong/css10) datasets. |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
test_dataset = load_dataset("common_voice", "el", split="test") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek") |
|
model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset["sentence"][:2]) |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the greek test data of Common Voice. |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
|
|
test_dataset = load_dataset("common_voice", "el", split="test") |
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek") |
|
model = Wav2Vec2ForCTC.from_pretrained("PereLluis13/wav2vec2-large-xlsr-53-greek") |
|
model.to("cuda") |
|
|
|
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]' |
|
|
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
``` |
|
|
|
**Test Result**: 20.89 % |
|
|
|
## Training |
|
|
|
The Common Voice `train`, `validation`, and CSS10 datasets were used for training, added as `extra` split to the dataset. The sampling rate and format of the CSS10 files is different, hence the function `speech_file_to_array_fn` was changed to: |
|
``` |
|
def speech_file_to_array_fn(batch): |
|
try: |
|
speech_array, sampling_rate = sf.read(batch["path"] + ".wav") |
|
except: |
|
speech_array, sampling_rate = librosa.load(batch["path"], sr = 16000, res_type='zero_order_hold') |
|
sf.write(batch["path"] + ".wav", speech_array, sampling_rate, subtype='PCM_24') |
|
batch["speech"] = speech_array |
|
batch["sampling_rate"] = sampling_rate |
|
batch["target_text"] = batch["text"] |
|
return batch |
|
``` |
|
|
|
As suggested by [Florian Zimmermeister](https://github.com/flozi00). |
|
|
|
The script used for training can be found in [run_common_voice.py](examples/research_projects/wav2vec2/run_common_voice.py), still pending of PR. The only changes are to `speech_file_to_array_fn`. Batch size was kept at 32 (using `gradient_accumulation_steps`) using one of the [OVH](https://www.ovh.com/) machines, with a V100 GPU (thank you very much [OVH](https://www.ovh.com/)). The model trained for 40 epochs, the first 20 with the `train+validation` splits, and then `extra` split was added with the data from CSS10 at the 20th epoch. |