cquest's picture
Update README.md
de31172 verified
---
license: etalab-2.0
pipeline_tag: object-detection
base_model: Ultralytics/YOLO11
---
This model has be trained for the Panoramax project in order to detect:
- people face to blur them
- licence plates to blur them
- road signs to classify them with other models
The last model has been trained on yolo11l with imgsz of 2048 and 300 epochs, the older one on yolo8s.
![](val_batch0_labels.jpg)
Here is the last run validation :
```
Validating runs/detect/train5/weights/best.pt...
Ultralytics 8.3.29 πŸš€ Python-3.12.3 torch-2.5.1+cu124 CUDA:0 (NVIDIA GeForce RTX 4090, 24207MiB)
YOLO11l summary (fused): 464 layers, 25,281,625 parameters, 0 gradients, 86.6 GFLOPs
Class Images Instances Box(P R mAP50 mAP50-95): 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 83/83 [00:08<00:00, 9.78it/s]
all 329 1209 0.812 0.768 0.815 0.412
sign 231 507 0.879 0.836 0.898 0.561
plate 202 410 0.833 0.849 0.889 0.438
face 118 292 0.724 0.619 0.657 0.237
Speed: 1.2ms preprocess, 18.4ms inference, 0.0ms loss, 1.6ms postprocess per image
```
![](results.png)