roberta-base-bne-finetuned-detests
This model is a fine-tuned version of BSC-TeMU/roberta-base-bne on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1686
- Accuracy: 0.8494
- F1-score: 0.7869
- Precision: 0.7855
- Recall: 0.7883
- Auc: 0.7883
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | Auc |
---|---|---|---|---|---|---|---|---|
0.0238 | 1.0 | 174 | 0.6262 | 0.8543 | 0.7656 | 0.8161 | 0.7382 | 0.7382 |
0.0269 | 2.0 | 348 | 1.1233 | 0.8298 | 0.6964 | 0.7997 | 0.6665 | 0.6665 |
0.0003 | 3.0 | 522 | 0.9814 | 0.8429 | 0.7600 | 0.7839 | 0.7435 | 0.7435 |
0.0001 | 4.0 | 696 | 1.1054 | 0.8445 | 0.7794 | 0.7787 | 0.7801 | 0.7801 |
0.0001 | 5.0 | 870 | 1.1088 | 0.8511 | 0.7948 | 0.7865 | 0.8046 | 0.8046 |
0.0001 | 6.0 | 1044 | 1.1265 | 0.8511 | 0.7908 | 0.7873 | 0.7945 | 0.7945 |
0.0001 | 7.0 | 1218 | 1.1441 | 0.8494 | 0.7879 | 0.7852 | 0.7909 | 0.7909 |
0.0 | 8.0 | 1392 | 1.1574 | 0.8494 | 0.7869 | 0.7855 | 0.7883 | 0.7883 |
0.0 | 9.0 | 1566 | 1.1657 | 0.8494 | 0.7869 | 0.7855 | 0.7883 | 0.7883 |
0.0 | 10.0 | 1740 | 1.1686 | 0.8494 | 0.7869 | 0.7855 | 0.7883 | 0.7883 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Pablo94/roberta-base-bne-finetuned-detests
Base model
BSC-LT/roberta-base-bne