Feature Extraction
sentence-transformers
PyTorch
Safetensors
Transformers
German
English
xlm-roberta
semantic textual similarity
sts
semantic search
sentence similarity
paraphrasing
documents retrieval
passage retrieval
information retrieval
sentence-transformer
text-embeddings-inference
Inference Endpoints
language: | |
- de | |
- en | |
pipeline_tag: feature-extraction | |
tags: | |
- semantic textual similarity | |
- sts | |
- semantic search | |
- sentence similarity | |
- paraphrasing | |
- documents retrieval | |
- passage retrieval | |
- information retrieval | |
- sentence-transformer | |
- feature-extraction | |
- transformers | |
task_categories: | |
- sentence-similarity | |
- feature-extraction | |
- text-retrieval | |
- other | |
library_name: sentence-transformers | |
license: mit | |
# Model card for PM-AI/paraphrase-distilroberta-base-v2_de-en | |
For internal purposes and for testing, we have made a monolingual paraphrasing model from Sentence Transformers usable for _German + English_ via [Knowledge Distillation](https://arxiv.org/abs/2004.09813). | |
The decision was made in favor of [sentence-transformers/paraphrase-distilroberta-base-v2](https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v2) because this model has no public available multilingual version (to our knowledge). | |
In addition, it has significantly more training samples compared to its predecessor: 83.3 million samples were used instead of 24.6 million samples. | |
## Training | |
1) Download of datasets | |
2) Execution of knowledge distillation | |
### Training Data | |
Datasets used based on [offical source](https://www.sbert.net/examples/training/paraphrases/README.html): | |
- _AllNLI_ | |
- _sentence-compression_ | |
- _SimpleWiki_ | |
- _altlex_ | |
- _msmarco-triplets_ | |
- _quora_duplicates_ | |
- _coco_captions_ | |
- _flickr30k_captions_ | |
- _yahoo_answers_title_question_ | |
- _S2ORC_citation_pairs_ | |
- _stackexchange_duplicate_questions_ | |
- _wiki-atomic-edits_ | |
### Training Execution | |
First we downloaded some german-english parallel datasets via [get_parallel_data_*.py](https://github.com/UKPLab/sentence-transformers/tree/b86eec31cf0a102ad786ba1ff31bfeb4998d3ca5/examples/training/multilingual). | |
These datasets are: _Tatoeba_, _WikiMatrix_, _TED2020_, _OpenSubtitles_, _Europarl_, _News-Commentary_ | |
Then we started knowledge distillation with [make_multilingual_sys.py](https://github.com/UKPLab/sentence-transformers/blob/b86eec31cf0a102ad786ba1ff31bfeb4998d3ca5/examples/training/multilingual/make_multilingual_sys.py) | |
#### Parameterization of training | |
- **Script:** [make_multilingual_sys.py](https://github.com/UKPLab/sentence-transformers/blob/b86eec31cf0a102ad786ba1ff31bfeb4998d3ca5/examples/training/multilingual/make_multilingual_sys.py) | |
- **Datasets:** Tatoeba, WikiMatrix, TED2020, OpenSubtitles, Europarl, News-Commentary | |
- **GPU:** NVIDIA A40 (Driver Version: 515.48.07; CUDA Version: 11.7) | |
- **Batch Size:** 64 | |
- **Max Sequence Length:** 256 | |
- **Train Max Sentence Length:** 600 | |
- **Max Sentences Per Train File:** 1000000 | |
- **Teacher Model:** [sentence-transformers/paraphrase-distilroberta-base-v2](https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v2) | |
- **Student Model:** [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) | |
- **Loss Function:** MSE Loss | |
- **Learning Rate:** 2e-5 | |
- **Epochs:** 20 | |
- **Evaluation Steps:** 10000 | |
- **Warmup Steps:** 10000 | |
### Acknowledgment | |
This work is a collaboration between [Technical University of Applied Sciences Wildau (TH Wildau)](https://en.th-wildau.de/) and [sense.ai.tion GmbH](https://senseaition.com/). | |
You can contact us via: | |
* [Philipp Müller (M.Eng.)](https://www.linkedin.com/in/herrphilipps); Author | |
* [Prof. Dr. Janett Mohnke](mailto:[email protected]); TH Wildau | |
* [Dr. Matthias Boldt, Jörg Oehmichen](mailto:[email protected]); sense.AI.tion GmbH | |
This work was funded by the European Regional Development Fund (EFRE) and the State of Brandenburg. Project/Vorhaben: "ProFIT: Natürlichsprachliche Dialogassistenten in der Pflege". | |
<div style="display:flex"> | |
<div style="padding-left:20px;"> | |
<a href="https://efre.brandenburg.de/efre/de/"><img src="https://huggingface.co/datasets/PM-AI/germandpr-beir/resolve/main/res/EFRE-Logo_rechts_oweb_en_rgb.jpeg" alt="Logo of European Regional Development Fund (EFRE)" width="200"/></a> | |
</div> | |
<div style="padding-left:20px;"> | |
<a href="https://www.senseaition.com"><img src="https://senseaition.com/wp-content/uploads/thegem-logos/logo_c847aaa8f42141c4055d4a8665eb208d_3x.png" alt="Logo of senseaition GmbH" width="200"/></a> | |
</div> | |
<div style="padding-left:20px;"> | |
<a href="https://www.th-wildau.de"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f6/TH_Wildau_Logo.png/640px-TH_Wildau_Logo.png" alt="Logo of TH Wildau" width="180"/></a> | |
</div> | |
</div> |