distilbert-finetuned-headings

This model is a fine-tuned version of distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1790
  • F1 Positive: 0.8852
  • F1 Negative: 0.9822
  • F1: 0.9691
  • Roc Auc: 0.9141
  • Accuracy: 0.9691

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss F1 Positive F1 Negative F1 Roc Auc Accuracy
0.1885 1.0 1785 0.1381 0.845 0.9771 0.9601 0.8786 0.9601
0.13 2.0 3570 0.1415 0.8434 0.9771 0.9601 0.8748 0.9601
0.1034 3.0 5355 0.1946 0.8507 0.9778 0.9614 0.8831 0.9614
0.0747 4.0 7140 0.1790 0.8852 0.9822 0.9691 0.9141 0.9691
0.0397 5.0 8925 0.2051 0.8718 0.9795 0.9646 0.9152 0.9646
0.032 6.0 10710 0.2302 0.8729 0.9803 0.9659 0.9065 0.9659
0.0211 7.0 12495 0.2454 0.8773 0.9798 0.9653 0.9269 0.9653
0.0219 8.0 14280 0.2693 0.8750 0.9789 0.9640 0.9318 0.9640

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for OrbitalWitness/distilbert-finetuned-headings

Finetuned
(233)
this model