|  | --- | 
					
						
						|  | license: gemma | 
					
						
						|  | license_link: https://choosealicense.com/licenses/gemma/ | 
					
						
						|  | base_model: google/gemma-2-9b-it | 
					
						
						|  | base_model_relation: quantized | 
					
						
						|  | --- | 
					
						
						|  | # gemma-2-9b-it-int4-ov | 
					
						
						|  | * Model creator: [google](https://huggingface.co/google) | 
					
						
						|  | * Original model: [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) | 
					
						
						|  |  | 
					
						
						|  | ## Description | 
					
						
						|  | This is [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf). | 
					
						
						|  |  | 
					
						
						|  | ## Quantization Parameters | 
					
						
						|  |  | 
					
						
						|  | Weight compression was performed using `nncf.compress_weights` with the following parameters: | 
					
						
						|  |  | 
					
						
						|  | * mode: **int4_asym** | 
					
						
						|  | * ratio: **1** | 
					
						
						|  | * group_size: **128** | 
					
						
						|  |  | 
					
						
						|  | For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html). | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Compatibility | 
					
						
						|  |  | 
					
						
						|  | The provided OpenVINO™ IR model is compatible with: | 
					
						
						|  |  | 
					
						
						|  | * OpenVINO version 2024.5.0 and higher | 
					
						
						|  | * Optimum Intel 1.21.0 and higher | 
					
						
						|  |  | 
					
						
						|  | ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  | pip install optimum[openvino] | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | 2. Run model inference: | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  | from transformers import AutoTokenizer | 
					
						
						|  | from optimum.intel.openvino import OVModelForCausalLM | 
					
						
						|  |  | 
					
						
						|  | model_id = "OpenVINO/gemma-2-9b-it-int4-ov" | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(model_id) | 
					
						
						|  | model = OVModelForCausalLM.from_pretrained(model_id) | 
					
						
						|  |  | 
					
						
						|  | inputs = tokenizer("What is OpenVINO?", return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | outputs = model.generate(**inputs, max_length=200) | 
					
						
						|  | text = tokenizer.batch_decode(outputs)[0] | 
					
						
						|  | print(text) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html). | 
					
						
						|  |  | 
					
						
						|  | ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) | 
					
						
						|  |  | 
					
						
						|  | 1. Install packages required for using OpenVINO GenAI. | 
					
						
						|  | ``` | 
					
						
						|  | pip install openvino-genai huggingface_hub | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | 2. Download model from HuggingFace Hub | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  | import huggingface_hub as hf_hub | 
					
						
						|  |  | 
					
						
						|  | model_id = "OpenVINO/gemma-2-9b-it-int4-ov" | 
					
						
						|  | model_path = "gemma-2-9b-it-int4-ov" | 
					
						
						|  |  | 
					
						
						|  | hf_hub.snapshot_download(model_id, local_dir=model_path) | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | 3. Run model inference: | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  | import openvino_genai as ov_genai | 
					
						
						|  |  | 
					
						
						|  | device = "CPU" | 
					
						
						|  | pipe = ov_genai.LLMPipeline(model_path, device) | 
					
						
						|  | print(pipe.generate("What is OpenVINO?", max_length=200)) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) | 
					
						
						|  |  | 
					
						
						|  | ## Limitations | 
					
						
						|  |  | 
					
						
						|  | Check the original model card for [original model card](https://huggingface.co/google/gemma-2-9b-it) for limitations. | 
					
						
						|  |  | 
					
						
						|  | ## Legal information | 
					
						
						|  |  | 
					
						
						|  | The original model is distributed under [gemma](https://choosealicense.com/licenses/gemma/) license. More details can be found in [original model card](https://huggingface.co/google/gemma-2-9b-it). | 
					
						
						|  |  | 
					
						
						|  | ## Disclaimer | 
					
						
						|  |  | 
					
						
						|  | Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights. | 
					
						
						|  |  |