|
--- |
|
library_name: transformers |
|
tags: [] |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
This model is a Bits&Bytes 4 bits quantization of the https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct model. |
|
|
|
The main advantages of this model are : |
|
- it runs on a GPU with 6GB of free ram. (So usually a user-grade gpu with 8 Gb VRAM, versus the standard model which needs 48+GB). |
|
- it is 2-3 times faster in inference time/token |
|
|
|
The main drawback is that is less accurate than the full(original) model, although is up to you to decide if the compromise is a good fit for your use-case. |
|
|
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. |
|
|
|
OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants. |
|
|
|
Developed by: OpenLLM-Ro |
|
Language(s): Romanian |
|
License: cc-by-nc-4.0 |
|
Finetuned from model: Meta-Llama-3-8B-Instruct |
|
Trained using: RoAlpaca, RoAlpacaGPT4, RoDolly, RoSelfInstruct, RoNoRobots, RoOrca, RoCamel, RoOpenAssistant, RoUltraChat |
|
|
|
|
|
### Model Sources [optional] |
|
|
|
Repository: https://github.com/OpenLLM-Ro/LLaMA-Factory |
|
Paper: https://arxiv.org/abs/2406.18266 |
|
|
|
ntended Use |
|
Intended Use Cases |
|
RoLlama3 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat. |
|
|
|
Out-of-Scope Use |
|
Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian. |
|
|
|
How to Get Started with the Model |
|
Use the code below to get started with the model. |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct") |
|
model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3-8b-Instruct") |
|
|
|
instruction = "Ce jocuri de societate pot juca cu prietenii mei?" |
|
chat = [ |
|
{"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."}, |
|
{"role": "user", "content": instruction}, |
|
] |
|
prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="") |
|
|
|
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") |
|
outputs = model.generate(input_ids=inputs, max_new_tokens=128) |
|
print(tokenizer.decode(outputs[0])) |
|
|
|
|
|
## Academic Benchmarks |
|
|
|
<table> |
|
<tbody> |
|
<tr> |
|
<td><strong>Model</strong></td> |
|
<td><strong><center>Average</center></strong></td> |
|
<td><strong><center>ARC</center></strong></td> |
|
<td><strong><center>MMLU</center></strong></td> |
|
<td><strong><center>Winogrande</center></strong></td> |
|
<td><strong><center>Hellaswag</center></strong></td> |
|
<td><strong><center>GSM8k</center></strong></td> |
|
<td><strong><center>TruthfulQA</center></strong></td> |
|
</tr> |
|
<tr> |
|
<td>RoLlama-3-8B-Instruct-4Bit</td><td><center>NA</center></td><td><center>40.38</center></td><td><center>NA</center></td><td><center>NA</center></td><td><center>NA</center></td><td><center><strong>NA</strong></center></td><td><center><strong>50.93</strong></center></td> |
|
</tr> |
|
<tr> |
|
<tr> |
|
<td>Llama-3-8B-Instruct</td><td><center>50.62</center></td><td><center>43.69</center></td><td><center>52.04</center></td><td><center>59.33</center></td><td><center>53.19</center></td><td><center><strong>43.87</strong></center></td><td><center><strong>51.59</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>50.56</center></td><td><center>44.70</center></td><td><center>52.19</center></td><td><center><strong>67.23</strong></center></td><td><center>57.69</center></td><td><center>30.23</center></td><td><center>51.34</center></td> |
|
</tr> |
|
<tr> |
|
<td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em><strong>52.21</strong></em></center></td><td><center><em><strong>47.94</strong></em></center></td><td><center><em><strong>53.50</strong></em></center></td><td><center><em>66.06</em></center></td><td><center><em><strong>59.72</strong></em></center></td><td><center><em>40.16</em></center></td><td><center><em>45.90</em></center></td> |
|
</tr> |
|
<tr> |
|
<td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>49.96</center></td><td><center>46.29</center></td><td><center>53.29</center></td><td><center>65.57</center></td><td><center>58.15</center></td><td><center>34.77</center></td><td><center>41.70</center></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
## Downstream tasks |
|
|
|
<table> |
|
<tbody> |
|
<tr> |
|
<td></td> |
|
<td colspan="4"><center><strong>LaRoSeDa</strong></center></td> |
|
<td colspan="4"><center><strong>WMT</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td></td> |
|
<td colspan="2"><center><strong>Few-shot</strong></center></td> |
|
<td colspan="2"><center><strong>Finetuned</strong></center></td> |
|
<td colspan="2"><center><strong>Few-shot</strong></center></td> |
|
<td colspan="2"><center><strong>Finetuned</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td><strong>Model</strong></td> |
|
<td><center><strong>Binary<br>(Macro F1)</strong></center></td> |
|
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td> |
|
<td><center><strong>Binary<br>(Macro F1)</strong></center></td> |
|
<td><center><strong>Multiclass<br>(Macro F1)</strong></center></td> |
|
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td> |
|
<td><center><strong>RO-EN<br>(Bleu)</strong></center></td> |
|
<td><center><strong>EN-RO<br>(Bleu)</strong></center></td> |
|
<td><center><strong>RO-EN<br>(Bleu)</strong></center> |
|
</tr> |
|
<tr> |
|
<td>Llama-3-8B-Instruct</td><td><center>95.88</center></td><td><center>56.21</center></td><td><center><strong>98.53</strong></center></td><td><center>86.19</center></td><td><center>18.88</center></td><td><center><strong>30.98</strong></center></td><td><center><strong>28.02</strong></center></td><td><center>40.28</center></td> |
|
</tr> |
|
<tr> |
|
<td>RoLlama3-8b-Instruct-2024-06-28</td><td><center><strong>97.52</strong></center></td><td><center><strong>67.41</strong></center></td><td><center>94.15</center></td><td><center>87.13</center></td><td><center><strong>24.01</strong></center></td><td><center>27.36</center></td><td><center>26.53</center></td><td><center>40.36</center></td> |
|
</tr> |
|
<tr> |
|
<td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em>95.58</em></center></td><td><center><em>61.20</em></center></td><td><center><em>96.46</em></center></td><td><center><em><strong>87.26</strong></em></center></td><td><center><em>22.92</em></center></td><td><center><em>24.28</em></center></td><td><center><em>27.31</em></center></td><td><center><em><strong>40.52</strong></em></center></td> |
|
</tr> |
|
<tr> |
|
<td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>97.48</center></td><td><center>54.00</center></td><td><center>-</center></td><td><center>-</center></td><td><center>22.09</center></td><td><center>23.00</center></td><td><center>-</center></td><td><center>-</center></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
|
|
<table> |
|
<tbody> |
|
<tr> |
|
<td></td> |
|
<td colspan="4"><center><strong>XQuAD</strong></center></td> |
|
<td colspan="4"><center><strong>STS</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td></td> |
|
<td colspan="2"><center><strong>Few-shot</strong></center></td> |
|
<td colspan="2"><center><strong>Finetuned</strong></center></td> |
|
<td colspan="2"><center><strong>Few-shot</strong></center></td> |
|
<td colspan="2"><center><strong>Finetuned</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td><strong>Model</strong></td> |
|
<td><center><strong>(EM)</strong></center></td> |
|
<td><center><strong>(F1)</strong></center></td> |
|
<td><center><strong>(EM)</strong></center></td> |
|
<td><center><strong>(F1)</strong></center></td> |
|
<td><center><strong>(Spearman)</strong></center></td> |
|
<td><center><strong>(Pearson)</strong></center></td> |
|
<td><center><strong>(Spearman)</strong></center></td> |
|
<td><center><strong>(Pearson)</strong></center></td> |
|
</tr> |
|
<tr> |
|
<td>RoLlama-3-8B-Instruct-4Bit - F5 Scores</td><td><center><strong>NA</strong></center></td><td><center>NA</center></td><td><center><strong>NA</strong></center></td><td><center><strong>NA</strong></center></td><td><center>68.58</center></td><td><center>NA</center></td><td><center>70.57</center></td><td><center>NA</center></td> |
|
</tr> |
|
|
|
<tr> |
|
<td>Llama-3-8B-Instruct</td><td><center><strong>39.47</strong></center></td><td><center>58.67</center></td><td><center><strong>67.65</strong></center></td><td><center><strong>82.77</strong></center></td><td><center>73.04</center></td><td><center>72.36</center></td><td><center>83.49</center></td><td><center>84.06</center></td> |
|
</tr> |
|
<tr> |
|
<td>RoLlama3-8b-Instruct-2024-06-28</td><td><center>39.43</center></td><td><center><strong>59.50</strong></center></td><td><center>44.45</center></td><td><center>59.76</center></td><td><center>77.20</center></td><td><center>77.87</center></td><td><center>85.80</center></td><td><center>86.05</center></td> |
|
</tr> |
|
<tr> |
|
<td><em>RoLlama3-8b-Instruct-2024-10-09</em></td><td><center><em>18.89</em></center></td><td><center><em>31.79</em></center></td><td><center><em>50.84</em></center></td><td><center><em>65.18</em></center></td><td><center><em>77.60</em></center></td><td><center><em>76.86</em></center></td><td><center><em><strong>86.70</strong></em></center></td><td><center><em><strong>87.09</strong></em></center></td> |
|
</tr> |
|
<tr> |
|
<td>RoLlama3-8b-Instruct-DPO-2024-10-09</td><td><center>26.05</center></td><td><center>42.77</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>79.64</strong></center></td><td><center><strong>79.52</strong></center></td><td><center>-</center></td><td><center>-</center></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
|
|
|
|
#### Hardware |
|
|
|
Nvidia RTX 4090 16GB, Laptop Version |
|
|
|
#### Software |
|
|
|
[More Information Needed] |
|
|
|
## RoLlama3 Model Family |
|
|
|
| Model | Link | |
|
|--------------------|:--------:| |
|
|RoLlama3-8b-Instruct-2024-06-28| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-06-28) | |
|
|*RoLlama3-8b-Instruct-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-2024-10-09) | |
|
|RoLlama3-8b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3-8b-Instruct-DPO-2024-10-09) | |
|
|
|
|
|
## Citation |
|
|
|
``` |
|
@misc{masala2024vorbecstiromanecsterecipetrain, |
|
title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions}, |
|
author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea}, |
|
year={2024}, |
|
eprint={2406.18266}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2406.18266}, |
|
} |