metadata
language: en
license: apache-2.0
library_name: pytorch
tags:
- deep-reinforcement-learning
- reinforcement-learning
- DI-engine
- QbertNoFrameskip-v4
benchmark_name: OpenAI/Gym/Atari
task_name: QbertNoFrameskip-v4
pipeline_tag: reinforcement-learning
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: OpenAI/Gym/Atari-QbertNoFrameskip-v4
type: OpenAI/Gym/Atari-QbertNoFrameskip-v4
metrics:
- type: mean_reward
value: 16375.0 +/- 0.0
name: mean_reward
Play QbertNoFrameskip-v4 with DQN Policy
Model Description
This is a simple DQN implementation to OpenAI/Gym/Atari QbertNoFrameskip-v4 using the DI-engine library and the DI-zoo.
DI-engine is a python library for solving general decision intelligence problems, which is based on implementations of reinforcement learning framework using PyTorch or JAX. This library aims to standardize the reinforcement learning framework across different algorithms, benchmarks, environments, and to support both academic researches and prototype applications. Besides, self-customized training pipelines and applications are supported by reusing different abstraction levels of DI-engine reinforcement learning framework.
Model Usage
Install the Dependencies
(Click for Details)
# install huggingface_ding
git clone https://github.com/opendilab/huggingface_ding.git
pip3 install -e ./huggingface_ding/
# install environment dependencies if needed
pip3 install DI-engine[common_env]
Git Clone from Huggingface and Run the Model
(Click for Details)
# running with trained model
python3 -u run.py
run.py
# [More Information Needed]
Run Model by Using Huggingface_ding
(Click for Details)
# running with trained model
python3 -u run.py
run.py
# [More Information Needed]
Model Training
Train the Model and Push to Huggingface_hub
(Click for Details)
#Training Your Own Agent
python3 -u train.py
train.py
# [More Information Needed]
Configuration
(Click for Details)
exp_config = {
'env': {
'manager': {
'episode_num': float("inf"),
'max_retry': 1,
'retry_type': 'reset',
'auto_reset': True,
'step_timeout': None,
'reset_timeout': None,
'retry_waiting_time': 0.1,
'cfg_type': 'BaseEnvManagerDict'
},
'stop_value': 30000,
'n_evaluator_episode': 8,
'env_id': 'QbertNoFrameskip-v4',
'collector_env_num': 8,
'evaluator_env_num': 8,
'fram_stack': 4,
'env_wrapper': 'atari_default'
},
'policy': {
'model': {
'encoder_hidden_size_list': [128, 128, 512],
'obs_shape': [4, 84, 84],
'action_shape': 6
},
'learn': {
'learner': {
'train_iterations': 1000000000,
'dataloader': {
'num_workers': 0
},
'log_policy': True,
'hook': {
'load_ckpt_before_run': '',
'log_show_after_iter': 100,
'save_ckpt_after_iter': 10000,
'save_ckpt_after_run': True
},
'cfg_type': 'BaseLearnerDict'
},
'update_per_collect': 10,
'batch_size': 32,
'learning_rate': 0.0001,
'target_update_freq': 500,
'target_theta': 0.005,
'ignore_done': False
},
'collect': {
'collector': {},
'n_sample': 100,
'unroll_len': 1
},
'eval': {
'evaluator': {
'eval_freq': 1000,
'render': {
'render_freq': -1,
'mode': 'train_iter'
},
'figure_path': None,
'cfg_type': 'InteractionSerialEvaluatorDict',
'stop_value': 30000,
'n_episode': 8
}
},
'other': {
'replay_buffer': {
'replay_buffer_size': 400000
},
'eps': {
'type': 'exp',
'start': 1.0,
'end': 0.05,
'decay': 1000000
}
},
'on_policy': False,
'cuda': True,
'multi_gpu': False,
'bp_update_sync': True,
'traj_len_inf': False,
'type': 'dqn',
'priority': False,
'priority_IS_weight': False,
'discount_factor': 0.99,
'nstep': 3,
'cfg_type': 'DQNPolicyDict'
},
'exp_name': 'QbertNoFrameskip-v4-DQN',
'seed': 0,
'wandb_logger': {
'gradient_logger': True,
'video_logger': True,
'plot_logger': True,
'action_logger': True,
'return_logger': False
}
}
Training Procedure
- Weights & Biases (wandb): monitor link
Model Information
- Github Repository: repo link
- Doc: DI-engine-docs Algorithm link
- Configuration: config link
- Demo: video
- Parameters total size: 55703.03 KB
- Last Update Date: 2023-07-23
Environments
- Benchmark: OpenAI/Gym/Atari
- Task: QbertNoFrameskip-v4
- Gym version: 0.25.1
- DI-engine version: v0.4.8
- PyTorch version: 2.0.1+cu117
- Doc: DI-engine-docs Environments link