|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:557850 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: intfloat/multilingual-e5-small |
|
datasets: [] |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: ذكر متوازن بعناية يقف على قدم واحدة بالقرب من منطقة شاطئ المحيط |
|
النظيفة |
|
sentences: |
|
- رجل يقدم عرضاً |
|
- هناك رجل بالخارج قرب الشاطئ |
|
- رجل يجلس على أريكه |
|
- source_sentence: رجل يقفز إلى سريره القذر |
|
sentences: |
|
- السرير قذر. |
|
- رجل يضحك أثناء غسيل الملابس |
|
- الرجل على القمر |
|
- source_sentence: الفتيات بالخارج |
|
sentences: |
|
- امرأة تلف الخيط إلى كرات بجانب كومة من الكرات |
|
- فتيان يركبان في جولة متعة |
|
- ثلاث فتيات يقفون سوية في غرفة واحدة تستمع وواحدة تكتب على الحائط والثالثة تتحدث |
|
إليهن |
|
- source_sentence: الرجل يرتدي قميصاً أزرق. |
|
sentences: |
|
- رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة حمراء |
|
مع الماء في الخلفية. |
|
- كتاب القصص مفتوح |
|
- رجل يرتدي قميص أسود يعزف على الجيتار. |
|
- source_sentence: يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة |
|
شابة. |
|
sentences: |
|
- ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه |
|
- رجل يستلقي على وجهه على مقعد في الحديقة. |
|
- الشاب نائم بينما الأم تقود ابنتها إلى الحديقة |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on intfloat/multilingual-e5-small |
|
results: |
|
- dataset: |
|
config: ar |
|
name: MTEB MIRACLRetrievalHardNegatives (ar) |
|
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb |
|
split: dev |
|
type: mteb/miracl-hard-negatives |
|
metrics: |
|
- type: main_score |
|
value: 33.441 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: ara-ara |
|
name: MTEB MLQARetrieval (ara-ara) |
|
revision: 397ed406c1a7902140303e7faf60fff35b58d285 |
|
split: test |
|
type: facebook/mlqa |
|
metrics: |
|
- type: main_score |
|
value: 64.488 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: ar |
|
name: MTEB MintakaRetrieval (ar) |
|
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e |
|
split: test |
|
type: jinaai/mintakaqa |
|
metrics: |
|
- type: main_score |
|
value: 16.162 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB SadeemQuestionRetrieval (default) |
|
revision: 3cb0752b182e5d5d740df547748b06663c8e0bd9 |
|
split: test |
|
type: sadeem-ai/sadeem-ar-eval-retrieval-questions |
|
metrics: |
|
- type: main_score |
|
value: 63.235 |
|
task: |
|
type: Retrieval |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 384 |
|
type: sts-test-384 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7883137447514015 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7971624317482785 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7845904338398069 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7939541836133244 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7882887522003604 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7971601260546269 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7883137483129774 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7971605875966696 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7883137483129774 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7971624317482785 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7851969391652749 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7968026743946358 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7852783784725356 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7935883492889713 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7882018230746569 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7963116553267949 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7786421988393841 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7867782644180616 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7882018230746569 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7968026743946358 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7754967709350954 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7933453885370457 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7832834632297865 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7907589269176767 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7867583047946054 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7935816990844704 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7317253736607925 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7335574962775742 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7867583047946054 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7935816990844704 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7625204599039478 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7837078735068292 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7752889433866854 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7790888579029828 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.777961287133872 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7815940757356076 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6685094830550401 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6621206899696827 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.777961287133872 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7837078735068292 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on intfloat/multilingual-e5-small |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision 0a68dcd3dad5b4962a78daa930087728292b241d --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Omartificial-Intelligence-Space/E5-Matro") |
|
# Run inference |
|
sentences = [ |
|
'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.', |
|
'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه', |
|
'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-384` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7883 | |
|
| **spearman_cosine** | **0.7972** | |
|
| pearson_manhattan | 0.7846 | |
|
| spearman_manhattan | 0.794 | |
|
| pearson_euclidean | 0.7883 | |
|
| spearman_euclidean | 0.7972 | |
|
| pearson_dot | 0.7883 | |
|
| spearman_dot | 0.7972 | |
|
| pearson_max | 0.7883 | |
|
| spearman_max | 0.7972 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7852 | |
|
| **spearman_cosine** | **0.7968** | |
|
| pearson_manhattan | 0.7853 | |
|
| spearman_manhattan | 0.7936 | |
|
| pearson_euclidean | 0.7882 | |
|
| spearman_euclidean | 0.7963 | |
|
| pearson_dot | 0.7786 | |
|
| spearman_dot | 0.7868 | |
|
| pearson_max | 0.7882 | |
|
| spearman_max | 0.7968 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7755 | |
|
| **spearman_cosine** | **0.7933** | |
|
| pearson_manhattan | 0.7833 | |
|
| spearman_manhattan | 0.7908 | |
|
| pearson_euclidean | 0.7868 | |
|
| spearman_euclidean | 0.7936 | |
|
| pearson_dot | 0.7317 | |
|
| spearman_dot | 0.7336 | |
|
| pearson_max | 0.7868 | |
|
| spearman_max | 0.7936 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7625 | |
|
| **spearman_cosine** | **0.7837** | |
|
| pearson_manhattan | 0.7753 | |
|
| spearman_manhattan | 0.7791 | |
|
| pearson_euclidean | 0.778 | |
|
| spearman_euclidean | 0.7816 | |
|
| pearson_dot | 0.6685 | |
|
| spearman_dot | 0.6621 | |
|
| pearson_max | 0.778 | |
|
| spearman_max | 0.7837 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
|
|
* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
* Size: 557,850 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 10.33 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.21 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.32 tokens</li><li>max: 53 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:------------------------------------------------------------|:--------------------------------------------|:------------------------------------| |
|
| <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>شخص في مطعم، يطلب عجة.</code> | |
|
| <code>أطفال يبتسمون و يلوحون للكاميرا</code> | <code>هناك أطفال حاضرون</code> | <code>الاطفال يتجهمون</code> | |
|
| <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code> | <code>الصبي يتزلج على الرصيف</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
384, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
|
|
* Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet |
|
* Size: 6,584 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 21.86 tokens</li><li>max: 105 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.22 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.2 tokens</li><li>max: 33 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------| |
|
| <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>إمرأتان يحملان حزمة</code> | <code>الرجال يتشاجرون خارج مطعم</code> | |
|
| <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> | |
|
| <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code> | <code>رجل يبيع الدونات لعميل</code> | <code>امرأة تشرب قهوتها في مقهى صغير</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
384, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 32 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-384_spearman_cosine | sts-test-64_spearman_cosine | |
|
|:------:|:-----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:| |
|
| 0.0344 | 200 | 13.1208 | - | - | - | - | |
|
| 0.0688 | 400 | 9.1894 | - | - | - | - | |
|
| 0.1033 | 600 | 8.0222 | - | - | - | - | |
|
| 0.1377 | 800 | 7.2405 | - | - | - | - | |
|
| 0.1721 | 1000 | 7.1622 | - | - | - | - | |
|
| 0.2065 | 1200 | 6.4282 | - | - | - | - | |
|
| 0.2409 | 1400 | 6.0936 | - | - | - | - | |
|
| 0.2753 | 1600 | 5.99 | - | - | - | - | |
|
| 0.3098 | 1800 | 5.6939 | - | - | - | - | |
|
| 0.3442 | 2000 | 5.694 | - | - | - | - | |
|
| 0.3786 | 2200 | 5.2366 | - | - | - | - | |
|
| 0.4130 | 2400 | 5.2994 | - | - | - | - | |
|
| 0.4474 | 2600 | 5.2079 | - | - | - | - | |
|
| 0.4818 | 2800 | 5.0532 | - | - | - | - | |
|
| 0.5163 | 3000 | 4.9978 | - | - | - | - | |
|
| 0.5507 | 3200 | 5.1764 | - | - | - | - | |
|
| 0.5851 | 3400 | 5.1315 | - | - | - | - | |
|
| 0.6195 | 3600 | 5.0198 | - | - | - | - | |
|
| 0.6539 | 3800 | 5.0308 | - | - | - | - | |
|
| 0.6883 | 4000 | 5.1631 | - | - | - | - | |
|
| 0.7228 | 4200 | 4.7916 | - | - | - | - | |
|
| 0.7572 | 4400 | 4.363 | - | - | - | - | |
|
| 0.7916 | 4600 | 3.2357 | - | - | - | - | |
|
| 0.8260 | 4800 | 2.9915 | - | - | - | - | |
|
| 0.8604 | 5000 | 2.8143 | - | - | - | - | |
|
| 0.8949 | 5200 | 2.6125 | - | - | - | - | |
|
| 0.9293 | 5400 | 2.5493 | - | - | - | - | |
|
| 0.9637 | 5600 | 2.4991 | - | - | - | - | |
|
| 0.9981 | 5800 | 2.163 | - | - | - | - | |
|
| 1.0325 | 6000 | 0.0 | - | - | - | - | |
|
| 1.0669 | 6200 | 0.0 | - | - | - | - | |
|
| 1.1014 | 6400 | 0.0 | - | - | - | - | |
|
| 1.1358 | 6600 | 0.0 | - | - | - | - | |
|
| 1.1702 | 6800 | 0.0 | - | - | - | - | |
|
| 1.2046 | 7000 | 0.0 | - | - | - | - | |
|
| 1.2390 | 7200 | 0.0 | - | - | - | - | |
|
| 1.2734 | 7400 | 0.0 | - | - | - | - | |
|
| 1.3079 | 7600 | 0.0 | - | - | - | - | |
|
| 1.3423 | 7800 | 0.0 | - | - | - | - | |
|
| 1.3767 | 8000 | 0.0 | - | - | - | - | |
|
| 1.4111 | 8200 | 0.0037 | - | - | - | - | |
|
| 1.4455 | 8400 | 0.0372 | - | - | - | - | |
|
| 1.4800 | 8600 | 0.0221 | - | - | - | - | |
|
| 1.0229 | 8800 | 4.3738 | - | - | - | - | |
|
| 1.0573 | 9000 | 6.338 | - | - | - | - | |
|
| 1.0917 | 9200 | 6.2223 | - | - | - | - | |
|
| 1.1261 | 9400 | 5.8673 | - | - | - | - | |
|
| 1.1606 | 9600 | 5.5907 | - | - | - | - | |
|
| 1.1950 | 9800 | 5.0307 | - | - | - | - | |
|
| 1.2294 | 10000 | 4.9193 | - | - | - | - | |
|
| 1.2638 | 10200 | 4.8798 | - | - | - | - | |
|
| 1.2982 | 10400 | 4.401 | - | - | - | - | |
|
| 1.3326 | 10600 | 4.2705 | - | - | - | - | |
|
| 1.3671 | 10800 | 4.3023 | - | - | - | - | |
|
| 1.4015 | 11000 | 4.1344 | - | - | - | - | |
|
| 1.4359 | 11200 | 4.0464 | - | - | - | - | |
|
| 1.4703 | 11400 | 4.0115 | - | - | - | - | |
|
| 1.5047 | 11600 | 3.9206 | - | - | - | - | |
|
| 1.5391 | 11800 | 4.0106 | - | - | - | - | |
|
| 1.5736 | 12000 | 4.1365 | - | - | - | - | |
|
| 1.6080 | 12200 | 4.0401 | - | - | - | - | |
|
| 1.6424 | 12400 | 4.0602 | - | - | - | - | |
|
| 1.6768 | 12600 | 4.076 | - | - | - | - | |
|
| 1.7112 | 12800 | 3.97 | - | - | - | - | |
|
| 1.7457 | 13000 | 3.7905 | - | - | - | - | |
|
| 1.7801 | 13200 | 2.414 | - | - | - | - | |
|
| 1.8145 | 13400 | 2.1811 | - | - | - | - | |
|
| 1.8489 | 13600 | 2.1183 | - | - | - | - | |
|
| 1.8833 | 13800 | 2.0578 | - | - | - | - | |
|
| 1.9177 | 14000 | 2.0173 | - | - | - | - | |
|
| 1.9522 | 14200 | 2.0093 | - | - | - | - | |
|
| 1.9866 | 14400 | 1.9467 | - | - | - | - | |
|
| 2.0210 | 14600 | 0.4674 | - | - | - | - | |
|
| 2.0554 | 14800 | 0.0 | - | - | - | - | |
|
| 2.0898 | 15000 | 0.0 | - | - | - | - | |
|
| 2.1242 | 15200 | 0.0 | - | - | - | - | |
|
| 2.1587 | 15400 | 0.0 | - | - | - | - | |
|
| 2.1931 | 15600 | 0.0 | - | - | - | - | |
|
| 2.2275 | 15800 | 0.0 | - | - | - | - | |
|
| 2.2619 | 16000 | 0.0 | - | - | - | - | |
|
| 2.2963 | 16200 | 0.0 | - | - | - | - | |
|
| 2.3308 | 16400 | 0.0 | - | - | - | - | |
|
| 2.3652 | 16600 | 0.0 | - | - | - | - | |
|
| 2.3996 | 16800 | 0.0 | - | - | - | - | |
|
| 2.4340 | 17000 | 0.0 | - | - | - | - | |
|
| 2.4684 | 17200 | 0.0256 | - | - | - | - | |
|
| 2.0114 | 17400 | 2.4155 | - | - | - | - | |
|
| 2.0170 | 17433 | - | 0.7933 | 0.7968 | 0.7972 | 0.7837 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.9.18 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.40.0 |
|
- PyTorch: 2.2.2+cu121 |
|
- Accelerate: 0.26.1 |
|
- Datasets: 2.19.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |