videomae-base-finetuned-ESBD_Augm
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.4714
- Accuracy: 0.3810
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 600
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3123 | 0.09 | 53 | 1.6064 | 0.2619 |
1.0067 | 1.09 | 106 | 1.0193 | 0.5952 |
0.6878 | 2.09 | 159 | 0.7885 | 0.7143 |
0.7995 | 3.09 | 212 | 1.2313 | 0.4524 |
0.4079 | 4.09 | 265 | 1.1397 | 0.6667 |
0.3837 | 5.09 | 318 | 0.7624 | 0.7857 |
0.1238 | 6.09 | 371 | 0.7338 | 0.8571 |
0.0156 | 7.09 | 424 | 0.8244 | 0.8333 |
0.0088 | 8.09 | 477 | 1.0176 | 0.7619 |
0.0472 | 9.09 | 530 | 0.8700 | 0.8333 |
0.0021 | 10.09 | 583 | 0.9045 | 0.8095 |
0.002 | 11.03 | 600 | 0.9068 | 0.8095 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 50
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.