|
--- |
|
language: |
|
- en |
|
tags: |
|
- ResNet-50 |
|
--- |
|
|
|
# ResNet-50 |
|
|
|
## Model Description |
|
|
|
ResNet-50 model from [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) paper. |
|
|
|
## Original implementation |
|
|
|
Follow [this link](https://huggingface.co/microsoft/resnet-50) to see the original implementation. |
|
|
|
# How to use |
|
|
|
You can use the `base` model that returns `last_hidden_state`. |
|
```python |
|
from transformers import AutoFeatureExtractor |
|
from onnxruntime import InferenceSession |
|
from datasets import load_dataset |
|
|
|
# load image |
|
dataset = load_dataset("huggingface/cats-image") |
|
image = dataset["test"]["image"][0] |
|
|
|
# load model |
|
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50") |
|
session = InferenceSession("onnx/model.onnx") |
|
|
|
# ONNX Runtime expects NumPy arrays as input |
|
inputs = feature_extractor(image, return_tensors="np") |
|
outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs)) |
|
``` |
|
|
|
Or you can use the model with classification head that returns `logits`. |
|
```python |
|
from transformers import AutoFeatureExtractor |
|
from onnxruntime import InferenceSession |
|
from datasets import load_dataset |
|
|
|
# load image |
|
dataset = load_dataset("huggingface/cats-image") |
|
image = dataset["test"]["image"][0] |
|
|
|
# load model |
|
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50") |
|
session = InferenceSession("onnx/model_cls.onnx") |
|
|
|
# ONNX Runtime expects NumPy arrays as input |
|
inputs = feature_extractor(image, return_tensors="np") |
|
outputs = session.run(output_names=["logits"], input_feed=dict(inputs)) |
|
``` |
|
|