distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 1.2032
- Accuracy: 0.84
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3949 | 1.0 | 899 | 1.4476 | 0.61 |
1.1682 | 2.0 | 1798 | 1.4548 | 0.66 |
0.2096 | 3.0 | 2697 | 1.0660 | 0.72 |
3.073 | 4.0 | 3596 | 1.0223 | 0.78 |
0.0012 | 5.0 | 4495 | 0.9689 | 0.83 |
0.0088 | 6.0 | 5394 | 1.5253 | 0.77 |
0.0003 | 7.0 | 6293 | 0.9924 | 0.86 |
0.0002 | 8.0 | 7192 | 1.2847 | 0.85 |
0.0002 | 9.0 | 8091 | 1.2553 | 0.84 |
0.0002 | 10.0 | 8990 | 1.2032 | 0.84 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for NurAzzamWafiuddin/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubert