BERThard / README.md
NorahAlshahrani's picture
Update README.md
a58b285 verified
|
raw
history blame
1.89 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: BERThard
    results: []
license: mit
datasets:
  - hard
language:
  - ar
pipeline_tag: text-classification
inference: false

BERThard

This model is a fine-tuned version of aubmindlab/bert-base-arabertv2 on the Hotel Arabic Reviews Dataset (HARD) dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4141
  • Accuracy: 0.8311

Model description

@misc{alshahrani2024arabic,
      title={{Arabic Synonym BERT-based Adversarial Examples for Text Classification}}, 
      author={Norah Alshahrani and Saied Alshahrani and Esma Wali and Jeanna Matthews},
      year={2024},
      eprint={2402.03477},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Training procedure

We have trained this model using the PaperSpace GPU-Cloud service. We used a machine with 8 CPUs, 45GB RAM, and A6000 GPU with 48GB RAM.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4488 1.0 5946 0.4104 0.8232
0.3866 2.0 11892 0.4047 0.8288
0.3462 3.0 17838 0.4141 0.8311

Framework versions

  • Transformers 4.28.1
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1