metadata
library_name: transformers
base_model: NoManDeRY/DPO-Shift-Qwen-2-7B-UltraChat200K-SFT
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: qwen-2-7b-dpo-ultrafeedback-5e-7-SFTed-paged_adamw_32bit-fixed-0.95
results: []
qwen-2-7b-dpo-ultrafeedback-5e-7-SFTed-paged_adamw_32bit-fixed-0.95
This is a model released from the preprint: DPO-Shift: Shifting the Distribution of Direct Preference Optimization. Please refer to our repository for more details.
This model is a fine-tuned version of NoManDeRY/DPO-Shift-Qwen-2-7B-UltraChat200K-SFT on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.5890
- Rewards/chosen: -0.0170
- Rewards/rejected: -0.3976
- Dpo Lambda: 0.9500
- Rewards/accuracies: 0.7302
- Rewards/margins: 0.3806
- Logps/rejected: -346.4959
- Logps/chosen: -335.0127
- Logits/rejected: -1.2190
- Logits/chosen: -1.1200
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Dpo Lambda | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6842 | 0.1047 | 50 | 0.6827 | 0.1496 | 0.1349 | 0.9500 | 0.6865 | 0.0147 | -293.2452 | -318.3515 | -1.2886 | -1.1643 |
0.6498 | 0.2093 | 100 | 0.6609 | 0.2769 | 0.2144 | 0.9500 | 0.7381 | 0.0625 | -285.2926 | -305.6219 | -1.2589 | -1.1266 |
0.6549 | 0.3140 | 150 | 0.6408 | 0.2288 | 0.0982 | 0.9500 | 0.7341 | 0.1307 | -296.9194 | -310.4279 | -1.3148 | -1.1846 |
0.6413 | 0.4186 | 200 | 0.6250 | 0.1619 | -0.0318 | 0.9500 | 0.7381 | 0.1938 | -309.9195 | -317.1192 | -1.2956 | -1.1761 |
0.6069 | 0.5233 | 250 | 0.6114 | 0.0886 | -0.1684 | 0.9500 | 0.7302 | 0.2570 | -323.5783 | -324.4538 | -1.2827 | -1.1695 |
0.611 | 0.6279 | 300 | 0.5997 | 0.0461 | -0.2674 | 0.9500 | 0.7381 | 0.3135 | -333.4765 | -328.6992 | -1.2575 | -1.1528 |
0.6151 | 0.7326 | 350 | 0.5924 | -0.0016 | -0.3586 | 0.9500 | 0.7222 | 0.3570 | -342.5963 | -333.4674 | -1.2391 | -1.1370 |
0.5997 | 0.8373 | 400 | 0.5898 | -0.0127 | -0.3884 | 0.9500 | 0.7222 | 0.3758 | -345.5813 | -334.5772 | -1.2248 | -1.1256 |
0.5708 | 0.9419 | 450 | 0.5890 | -0.0170 | -0.3976 | 0.9500 | 0.7302 | 0.3806 | -346.4959 | -335.0127 | -1.2190 | -1.1200 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1